File size: 2,274 Bytes
f20aa70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: openai/whisper-small.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: abbenedekwhisper-small.en-finetuning2-D3K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# abbenedekwhisper-small.en-finetuning2-D3K
This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 7.0682
- Cer: 53.2554
- Wer: 135.0993
- Ser: 100.0
- Cer Clean: 0.5008
- Wer Clean: 0.6623
- Ser Clean: 1.7544
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
| 7.4342 | 0.05 | 10 | 7.0727 | 53.2554 | 135.0993 | 100.0 | 0.5008 | 0.6623 | 1.7544 |
| 7.2902 | 0.11 | 20 | 7.0722 | 53.2554 | 135.0993 | 100.0 | 0.5008 | 0.6623 | 1.7544 |
| 6.9726 | 0.16 | 30 | 7.0711 | 53.2554 | 135.0993 | 100.0 | 0.5008 | 0.6623 | 1.7544 |
| 7.3598 | 0.21 | 40 | 7.0705 | 53.2554 | 135.0993 | 100.0 | 0.5008 | 0.6623 | 1.7544 |
| 7.0578 | 0.27 | 50 | 7.0682 | 53.2554 | 135.0993 | 100.0 | 0.5008 | 0.6623 | 1.7544 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.14.5
- Tokenizers 0.15.2
|