--- license: mit tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 40.8245 --- # m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Bleu: 40.8245 - Meteor: 0.4272 - Gen Len: 41.8075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 5.1584 | 0.5 | 100 | 3.2518 | 30.3723 | 0.3633 | 41.5 | | 2.1351 | 1.0 | 200 | 0.9929 | 32.9915 | 0.3833 | 41.8225 | | 0.568 | 1.5 | 300 | 0.4312 | 33.705 | 0.3896 | 42.6225 | | 0.3749 | 2.0 | 400 | 0.3697 | 36.9316 | 0.4084 | 40.57 | | 0.2376 | 2.5 | 500 | 0.3587 | 37.6782 | 0.4124 | 41.99 | | 0.2435 | 3.0 | 600 | 0.3529 | 37.9931 | 0.4128 | 42.02 | | 0.1706 | 3.5 | 700 | 0.3531 | 39.9972 | 0.4252 | 41.8025 | | 0.165 | 4.0 | 800 | 0.3514 | 39.3155 | 0.42 | 41.0275 | | 0.1273 | 4.5 | 900 | 0.3606 | 40.0765 | 0.4234 | 41.6175 | | 0.1307 | 5.0 | 1000 | 0.3550 | 40.4468 | 0.428 | 41.72 | | 0.0926 | 5.5 | 1100 | 0.3603 | 40.5454 | 0.4307 | 41.765 | | 0.1096 | 6.0 | 1200 | 0.3613 | 40.5691 | 0.4298 | 42.31 | | 0.0826 | 6.5 | 1300 | 0.3642 | 40.8245 | 0.4272 | 41.8075 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1