File size: 5,177 Bytes
cf7534e 9a75856 cf7534e 8798142 cf7534e 1dbe901 cf7534e 1dbe901 cf7534e 6dcea68 cf7534e 2b9fd89 cf7534e 684f85d cf7534e 72bb1ba 751c3c6 cf7534e 684f85d cf7534e a2fb0eb cf7534e 751c3c6 7bd6ac4 cf7534e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
license: cc-by-sa-3.0
language:
- en
tags:
- AWQ
inference: false
---
# VMware/open-llama-7B-v2-open-instruct (4-bit 128g AWQ Quantized)
Instruction-tuned version of the fully trained Open LLama 7B v2 model. The model is open for <b>COMMERCIAL USE</b>. <br>
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
## Model Date
July 12, 2023
## Model License
Please refer to original OpenLLaMa model license ([link](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)).
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
## CUDA Version
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher.
For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.
## How to Use
```bash
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
```
```python
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download
model_name = "abhinavkulkarni/VMware-open-llama-7b-v2-open-instruct"
# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
except:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Model
w_bit = 4
q_config = {
"zero_point": True,
"q_group_size": 128,
}
load_quant = snapshot_download(model_name)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config=config,
torch_dtype=torch.float16, trust_remote_code=True)
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()
model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")
# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
inputs=input_ids,
temperature=0.7,
max_new_tokens=512,
top_p=0.15,
top_k=0,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer)
```
## Evaluation
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
[Open-LLaMA-7B-v2-Instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)
| Task |Version| Metric | Value | |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext| 1|word_perplexity|16.6822| | |
| | |byte_perplexity| 1.6927| | |
| | |bits_per_byte | 0.7593| | |
[Open-LLaMA-7B-v2-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/VMware-open-llama-7b-v2-open-instruct-w4-g128-awq)
| Task |Version| Metric | Value | |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext| 1|word_perplexity|17.1546| | |
| | |byte_perplexity| 1.7015| | |
| | |bits_per_byte | 0.7668| | |
## Acknowledgements
If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX:
```
@software{openlm2023openllama,
author = {Geng, Xinyang and Liu, Hao},
title = {OpenLLaMA: An Open Reproduction of LLaMA},
month = May,
year = 2023,
url = {https://github.com/openlm-research/open_llama}
}
```
```
@software{together2023redpajama,
author = {Together Computer},
title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
month = April,
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
```
```
@article{touvron2023llama,
title={Llama: Open and efficient foundation language models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
```
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:
```
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
```
|