--- license: cc-by-sa-3.0 tags: - MosaicML - AWQ inference: false --- # MPT-7B-Instruct (4-bit 128g AWQ Quantized) [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) is a model for short-form instruction following. This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq). ## Model Date July 5, 2023 ## Model License Please refer to original MPT model license ([link](https://huggingface.co/mosaicml/mpt-7b-instruct)). Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)). ## CUDA Version This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher. For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work. ## How to Use ```bash git clone https://github.com/mit-han-lab/llm-awq \ && cd llm-awq \ && git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \ && pip install -e . \ && cd awq/kernels \ && python setup.py install ``` ```python import time import torch from awq.quantize.quantizer import real_quantize_model_weight from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer from accelerate import init_empty_weights, load_checkpoint_and_dispatch from huggingface_hub import snapshot_download model_name = "abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq" # Config config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) # Tokenizer try: tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True) except: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_special_tokens=True) # Model w_bit = 4 q_config = { "zero_point": True, "q_group_size": 128, } load_quant = snapshot_download(model_name) with init_empty_weights(): model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True) real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True) model.tie_weights() model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced") # Inference prompt = f'''What is the difference between nuclear fusion and fission? ###Response:''' input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda() output = model.generate( inputs=input_ids, temperature=0.7, max_new_tokens=512, top_p=0.15, top_k=0, repetition_penalty=1.1, eos_token_id=tokenizer.eos_token_id, streamer=streamer) ``` ## Evaluation This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness). [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|10.8864| | | | | |byte_perplexity| 1.5628| | | | | |bits_per_byte | 0.6441| | | [MPT-7B-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|11.2696| | | | | |byte_perplexity| 1.5729| | | | | |bits_per_byte | 0.6535| | | ## Acknowledgements The MPT model was originally finetuned by Sam Havens and the MosaicML NLP team. Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ``` The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper: ``` @article{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023} } ```