abhiraj1 commited on
Commit
fec87a9
1 Parent(s): f1ec54a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: UKPLab/triple-encoders-dailydialog
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:985575
13
+ - loss:CosineSimilarityTripleEncoderLoss
14
+ - loss:ContrastiveLoss
15
+ widget:
16
+ - source_sentence: A small white and tan dog licking up peanut butter.
17
+ sentences:
18
+ - Someone is making dinner in the kitchen.
19
+ - Someone put peanut butter on the dog's nose because that's always good for a laugh.
20
+ - Two dogs are eating food from a bowl in a kitchen
21
+ - source_sentence: A person in a heavy coat shoveling snow.
22
+ sentences:
23
+ - Someone is holding a rocket launcher.
24
+ - An old person is shoveling snow.
25
+ - The private bar's pro bono work was supported by the judges.
26
+ - source_sentence: '[B1] [O] [BEFORE] '
27
+ sentences:
28
+ - '[B2] [E] [BEFORE] '
29
+ - '[B2] [O] [BEFORE] e'
30
+ - '[AFTER] u'
31
+ - source_sentence: '[B1] [E] [BEFORE] e'
32
+ sentences:
33
+ - '[B2] [O] [BEFORE] :'
34
+ - '[B2] [O] [BEFORE] t'
35
+ - '[AFTER] C'
36
+ - source_sentence: '[B1] [O] [BEFORE] s'
37
+ sentences:
38
+ - '[B2] [O] [BEFORE] o'
39
+ - '[B2] [E] [BEFORE] '
40
+ - '[AFTER] u'
41
+ ---
42
+
43
+ # SentenceTransformer based on UKPLab/triple-encoders-dailydialog
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [UKPLab/triple-encoders-dailydialog](https://huggingface.co/UKPLab/triple-encoders-dailydialog). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [UKPLab/triple-encoders-dailydialog](https://huggingface.co/UKPLab/triple-encoders-dailydialog) <!-- at revision 390bfe14e21b0eb89068887d1032afcb4f2a1b27 -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 1024 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("abhiraj1/eval_triple_encoder")
90
+ # Run inference
91
+ sentences = [
92
+ '[B1] [O] [BEFORE] s',
93
+ '[B2] [E] [BEFORE] ',
94
+ '[AFTER] u',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 1024]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Datasets
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 43,506 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, and <code>label</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 | label |
153
+ |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------|
154
+ | type | string | string | string | float |
155
+ | details | <ul><li>min: 5 tokens</li><li>mean: 5.86 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.84 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.81 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.2</li><li>max: 1.0</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 | label |
158
+ |:---------------------------------|:---------------------------------|:-----------------------|:--------------------------------|
159
+ | <code>[B1] [O] [BEFORE] </code> | <code>[B2] [E] [BEFORE] </code> | <code>[AFTER] u</code> | <code>0.0</code> |
160
+ | <code>[B1] [E] [BEFORE] e</code> | <code>[B2] [O] [BEFORE] :</code> | <code>[AFTER] C</code> | <code>0.0</code> |
161
+ | <code>[B1] [O] [BEFORE] s</code> | <code>[B2] [E] [BEFORE] </code> | <code>[AFTER] u</code> | <code>0.6000000000000001</code> |
162
+ * Loss: <code>triple_encoders.losses.CosineSimilarityTripleEncoderLoss.CosineSimilarityTripleEncoderLoss</code>
163
+
164
+ #### Unnamed Dataset
165
+
166
+
167
+ * Size: 942,069 training samples
168
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
169
+ * Approximate statistics based on the first 1000 samples:
170
+ | | sentence_0 | sentence_1 | label |
171
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
172
+ | type | string | string | int |
173
+ | details | <ul><li>min: 5 tokens</li><li>mean: 20.26 tokens</li><li>max: 182 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.94 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~32.40%</li><li>1: ~33.70%</li><li>2: ~33.90%</li></ul> |
174
+ * Samples:
175
+ | sentence_0 | sentence_1 | label |
176
+ |:---------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------|
177
+ | <code>And the reason Lincoln and his goons had shown up? Well, not everybody was full of respect.</code> | <code>Lincoln didn't show up.</code> | <code>0</code> |
178
+ | <code>a rally car driving down a roadway with people on the side taking pictures</code> | <code>People on the side of road taking picture of a rally car driving down</code> | <code>1</code> |
179
+ | <code>The dog is wearing a purple cape.</code> | <code>THE ANIMAL IS IN A PAGEANT</code> | <code>2</code> |
180
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
181
+ ```json
182
+ {
183
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
184
+ "margin": 0.5,
185
+ "size_average": true
186
+ }
187
+ ```
188
+
189
+ ### Training Hyperparameters
190
+ #### Non-Default Hyperparameters
191
+
192
+ - `per_device_train_batch_size`: 16
193
+ - `per_device_eval_batch_size`: 16
194
+ - `num_train_epochs`: 1
195
+ - `multi_dataset_batch_sampler`: round_robin
196
+
197
+ #### All Hyperparameters
198
+ <details><summary>Click to expand</summary>
199
+
200
+ - `overwrite_output_dir`: False
201
+ - `do_predict`: False
202
+ - `eval_strategy`: no
203
+ - `prediction_loss_only`: True
204
+ - `per_device_train_batch_size`: 16
205
+ - `per_device_eval_batch_size`: 16
206
+ - `per_gpu_train_batch_size`: None
207
+ - `per_gpu_eval_batch_size`: None
208
+ - `gradient_accumulation_steps`: 1
209
+ - `eval_accumulation_steps`: None
210
+ - `learning_rate`: 5e-05
211
+ - `weight_decay`: 0.0
212
+ - `adam_beta1`: 0.9
213
+ - `adam_beta2`: 0.999
214
+ - `adam_epsilon`: 1e-08
215
+ - `max_grad_norm`: 1
216
+ - `num_train_epochs`: 1
217
+ - `max_steps`: -1
218
+ - `lr_scheduler_type`: linear
219
+ - `lr_scheduler_kwargs`: {}
220
+ - `warmup_ratio`: 0.0
221
+ - `warmup_steps`: 0
222
+ - `log_level`: passive
223
+ - `log_level_replica`: warning
224
+ - `log_on_each_node`: True
225
+ - `logging_nan_inf_filter`: True
226
+ - `save_safetensors`: True
227
+ - `save_on_each_node`: False
228
+ - `save_only_model`: False
229
+ - `restore_callback_states_from_checkpoint`: False
230
+ - `no_cuda`: False
231
+ - `use_cpu`: False
232
+ - `use_mps_device`: False
233
+ - `seed`: 42
234
+ - `data_seed`: None
235
+ - `jit_mode_eval`: False
236
+ - `use_ipex`: False
237
+ - `bf16`: False
238
+ - `fp16`: False
239
+ - `fp16_opt_level`: O1
240
+ - `half_precision_backend`: auto
241
+ - `bf16_full_eval`: False
242
+ - `fp16_full_eval`: False
243
+ - `tf32`: None
244
+ - `local_rank`: 0
245
+ - `ddp_backend`: None
246
+ - `tpu_num_cores`: None
247
+ - `tpu_metrics_debug`: False
248
+ - `debug`: []
249
+ - `dataloader_drop_last`: False
250
+ - `dataloader_num_workers`: 0
251
+ - `dataloader_prefetch_factor`: None
252
+ - `past_index`: -1
253
+ - `disable_tqdm`: False
254
+ - `remove_unused_columns`: True
255
+ - `label_names`: None
256
+ - `load_best_model_at_end`: False
257
+ - `ignore_data_skip`: False
258
+ - `fsdp`: []
259
+ - `fsdp_min_num_params`: 0
260
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
261
+ - `fsdp_transformer_layer_cls_to_wrap`: None
262
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
263
+ - `deepspeed`: None
264
+ - `label_smoothing_factor`: 0.0
265
+ - `optim`: adamw_torch
266
+ - `optim_args`: None
267
+ - `adafactor`: False
268
+ - `group_by_length`: False
269
+ - `length_column_name`: length
270
+ - `ddp_find_unused_parameters`: None
271
+ - `ddp_bucket_cap_mb`: None
272
+ - `ddp_broadcast_buffers`: False
273
+ - `dataloader_pin_memory`: True
274
+ - `dataloader_persistent_workers`: False
275
+ - `skip_memory_metrics`: True
276
+ - `use_legacy_prediction_loop`: False
277
+ - `push_to_hub`: False
278
+ - `resume_from_checkpoint`: None
279
+ - `hub_model_id`: None
280
+ - `hub_strategy`: every_save
281
+ - `hub_private_repo`: False
282
+ - `hub_always_push`: False
283
+ - `gradient_checkpointing`: False
284
+ - `gradient_checkpointing_kwargs`: None
285
+ - `include_inputs_for_metrics`: False
286
+ - `eval_do_concat_batches`: True
287
+ - `fp16_backend`: auto
288
+ - `push_to_hub_model_id`: None
289
+ - `push_to_hub_organization`: None
290
+ - `mp_parameters`:
291
+ - `auto_find_batch_size`: False
292
+ - `full_determinism`: False
293
+ - `torchdynamo`: None
294
+ - `ray_scope`: last
295
+ - `ddp_timeout`: 1800
296
+ - `torch_compile`: False
297
+ - `torch_compile_backend`: None
298
+ - `torch_compile_mode`: None
299
+ - `dispatch_batches`: None
300
+ - `split_batches`: None
301
+ - `include_tokens_per_second`: False
302
+ - `include_num_input_tokens_seen`: False
303
+ - `neftune_noise_alpha`: None
304
+ - `optim_target_modules`: None
305
+ - `batch_eval_metrics`: False
306
+ - `batch_sampler`: batch_sampler
307
+ - `multi_dataset_batch_sampler`: round_robin
308
+
309
+ </details>
310
+
311
+ ### Training Logs
312
+ | Epoch | Step | Training Loss |
313
+ |:------:|:----:|:-------------:|
314
+ | 0.0919 | 500 | 0.0838 |
315
+ | 0.1838 | 1000 | 0.0474 |
316
+ | 0.2757 | 1500 | 0.0414 |
317
+ | 0.3676 | 2000 | 0.0417 |
318
+ | 0.4596 | 2500 | 0.042 |
319
+ | 0.5515 | 3000 | 0.0423 |
320
+ | 0.6434 | 3500 | 0.0408 |
321
+ | 0.7353 | 4000 | 0.0427 |
322
+ | 0.8272 | 4500 | 0.0414 |
323
+ | 0.9191 | 5000 | 0.0415 |
324
+
325
+
326
+ ### Framework Versions
327
+ - Python: 3.10.12
328
+ - Sentence Transformers: 3.0.1
329
+ - Transformers: 4.41.2
330
+ - PyTorch: 2.3.0+cu121
331
+ - Accelerate: 0.32.1
332
+ - Datasets: 2.20.0
333
+ - Tokenizers: 0.19.1
334
+
335
+ ## Citation
336
+
337
+ ### BibTeX
338
+
339
+ #### Sentence Transformers
340
+ ```bibtex
341
+ @inproceedings{reimers-2019-sentence-bert,
342
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
343
+ author = "Reimers, Nils and Gurevych, Iryna",
344
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
345
+ month = "11",
346
+ year = "2019",
347
+ publisher = "Association for Computational Linguistics",
348
+ url = "https://arxiv.org/abs/1908.10084",
349
+ }
350
+ ```
351
+
352
+ #### ContrastiveLoss
353
+ ```bibtex
354
+ @inproceedings{hadsell2006dimensionality,
355
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
356
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
357
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
358
+ year={2006},
359
+ volume={2},
360
+ number={},
361
+ pages={1735-1742},
362
+ doi={10.1109/CVPR.2006.100}
363
+ }
364
+ ```
365
+
366
+ <!--
367
+ ## Glossary
368
+
369
+ *Clearly define terms in order to be accessible across audiences.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Authors
374
+
375
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Contact
380
+
381
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
382
+ -->
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "[AFTER]": 30523,
3
+ "[B1]": 30526,
4
+ "[B2]": 30527,
5
+ "[BEFORE]": 30522,
6
+ "[E]": 30525,
7
+ "[O]": 30524
8
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "UKPLab/triple-encoders-dailydialog",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30528
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85793980bc29faf4c04d76aa0af00c2a4a64588d56e93e1e1949716298acaf70
3
+ size 1340637008
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30522": {
44
+ "content": "[BEFORE]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "30523": {
52
+ "content": "[AFTER]",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "30524": {
60
+ "content": "[O]",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "30525": {
68
+ "content": "[E]",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "30526": {
76
+ "content": "[B1]",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "30527": {
84
+ "content": "[B2]",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ }
91
+ },
92
+ "clean_up_tokenization_spaces": true,
93
+ "cls_token": "[CLS]",
94
+ "do_lower_case": true,
95
+ "mask_token": "[MASK]",
96
+ "max_length": 512,
97
+ "model_max_length": 1000000000000000019884624838656,
98
+ "pad_to_multiple_of": null,
99
+ "pad_token": "[PAD]",
100
+ "pad_token_type_id": 0,
101
+ "padding_side": "right",
102
+ "sep_token": "[SEP]",
103
+ "stride": 0,
104
+ "strip_accents": null,
105
+ "tokenize_chinese_chars": true,
106
+ "tokenizer_class": "BertTokenizer",
107
+ "truncation_side": "right",
108
+ "truncation_strategy": "longest_first",
109
+ "unk_token": "[UNK]"
110
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff