--- license: cc-by-nc-4.0 base_model: mlabonne/NeuralMonarch-7B tags: - generated_from_trainer - axolotl - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: AlphaMonarch-laser results: [] datasets: - argilla/OpenHermes2.5-dpo-binarized-alpha language: - en library_name: transformers pipeline_tag: text-generation --- # AlphaMonarch-daser ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/kHENSnBk6Zf7CSYM3Lyng.jpeg) AlphaMonarch-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released [AlphaMonarch-dora](https://huggingface.co/abideen/AlphaMonarch-dora). I have trained this model for 1080 steps. Comparison of AlphaMonarch, AlphaMonarch-laser, AlphaMonarch-daser, and AlphaMonarch-dora on the OpenLLM leaderboard are: ## 🏆 Evaluation results On YALL leaderboard: AlphaMonarch-daser > AlphaMonarch-dora > AlphaMonarch > AlphaMonarch-laser ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/rh-FdXPxIcR5OIv1UINhp.png) On OpenLLM bench: AlphaMonarch-laser > AlphaMonarch > AlphaMonarch-daser > AlphaMonarch-dora ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/qpH3u3bnMMVO71pjnbwS4.png) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1080 ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0