--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - teknium/OpenHermes-2.5-Mistral-7B - abacusai/Slerp-CM-mist-dpo - berkeley-nest/Starling-LM-7B-alpha --- # DareVox-7B DareVox-7B is a merge of the following models: * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) * [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo) * [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: teknium/OpenHermes-2.5-Mistral-7B parameters: density: 0.53 weight: 0.4 - model: abacusai/Slerp-CM-mist-dpo parameters: density: 0.53 weight: 0.3 - model: berkeley-nest/Starling-LM-7B-alpha parameters: density: 0.5 weight: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/DareVox-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```