File size: 51,757 Bytes
71d94dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
# Copyright (c) Facebook, Inc. and its affiliates.
import colorsys
import logging
import math
import numpy as np
from enum import Enum, unique
import cv2
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import pycocotools.mask as mask_util
import torch
from matplotlib.backends.backend_agg import FigureCanvasAgg
from PIL import Image

from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager

from .colormap import random_color

logger = logging.getLogger(__name__)

__all__ = ["ColorMode", "VisImage", "Visualizer"]


_SMALL_OBJECT_AREA_THRESH = 1000
_LARGE_MASK_AREA_THRESH = 120000
_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
_BLACK = (0, 0, 0)
_RED = (1.0, 0, 0)

_KEYPOINT_THRESHOLD = 0.05


@unique
class ColorMode(Enum):
    """
    Enum of different color modes to use for instance visualizations.
    """

    IMAGE = 0
    """
    Picks a random color for every instance and overlay segmentations with low opacity.
    """
    SEGMENTATION = 1
    """
    Let instances of the same category have similar colors
    (from metadata.thing_colors), and overlay them with
    high opacity. This provides more attention on the quality of segmentation.
    """
    IMAGE_BW = 2
    """
    Same as IMAGE, but convert all areas without masks to gray-scale.
    Only available for drawing per-instance mask predictions.
    """


class GenericMask:
    """
    Attribute:
        polygons (list[ndarray]): list[ndarray]: polygons for this mask.
            Each ndarray has format [x, y, x, y, ...]
        mask (ndarray): a binary mask
    """

    def __init__(self, mask_or_polygons, height, width):
        self._mask = self._polygons = self._has_holes = None
        self.height = height
        self.width = width

        m = mask_or_polygons
        if isinstance(m, dict):
            # RLEs
            assert "counts" in m and "size" in m
            if isinstance(m["counts"], list):  # uncompressed RLEs
                h, w = m["size"]
                assert h == height and w == width
                m = mask_util.frPyObjects(m, h, w)
            self._mask = mask_util.decode(m)[:, :]
            return

        if isinstance(m, list):  # list[ndarray]
            self._polygons = [np.asarray(x).reshape(-1) for x in m]
            return

        if isinstance(m, np.ndarray):  # assumed to be a binary mask
            assert m.shape[1] != 2, m.shape
            assert m.shape == (
                height,
                width,
            ), f"mask shape: {m.shape}, target dims: {height}, {width}"
            self._mask = m.astype("uint8")
            return

        raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))

    @property
    def mask(self):
        if self._mask is None:
            self._mask = self.polygons_to_mask(self._polygons)
        return self._mask

    @property
    def polygons(self):
        if self._polygons is None:
            self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
        return self._polygons

    @property
    def has_holes(self):
        if self._has_holes is None:
            if self._mask is not None:
                self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
            else:
                self._has_holes = False  # if original format is polygon, does not have holes
        return self._has_holes

    def mask_to_polygons(self, mask):
        # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
        # hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
        # Internal contours (holes) are placed in hierarchy-2.
        # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
        mask = np.ascontiguousarray(mask)  # some versions of cv2 does not support incontiguous arr
        res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
        hierarchy = res[-1]
        if hierarchy is None:  # empty mask
            return [], False
        has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
        res = res[-2]
        res = [x.flatten() for x in res]
        # These coordinates from OpenCV are integers in range [0, W-1 or H-1].
        # We add 0.5 to turn them into real-value coordinate space. A better solution
        # would be to first +0.5 and then dilate the returned polygon by 0.5.
        res = [x + 0.5 for x in res if len(x) >= 6]
        return res, has_holes

    def polygons_to_mask(self, polygons):
        rle = mask_util.frPyObjects(polygons, self.height, self.width)
        rle = mask_util.merge(rle)
        return mask_util.decode(rle)[:, :]

    def area(self):
        return self.mask.sum()

    def bbox(self):
        p = mask_util.frPyObjects(self.polygons, self.height, self.width)
        p = mask_util.merge(p)
        bbox = mask_util.toBbox(p)
        bbox[2] += bbox[0]
        bbox[3] += bbox[1]
        return bbox


class _PanopticPrediction:
    """
    Unify different panoptic annotation/prediction formats
    """

    def __init__(self, panoptic_seg, segments_info, metadata=None):
        if segments_info is None:
            assert metadata is not None
            # If "segments_info" is None, we assume "panoptic_img" is a
            # H*W int32 image storing the panoptic_id in the format of
            # category_id * label_divisor + instance_id. We reserve -1 for
            # VOID label.
            label_divisor = metadata.label_divisor
            segments_info = []
            for panoptic_label in np.unique(panoptic_seg.numpy()):
                if panoptic_label == -1:
                    # VOID region.
                    continue
                pred_class = panoptic_label // label_divisor
                isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
                segments_info.append(
                    {
                        "id": int(panoptic_label),
                        "category_id": int(pred_class),
                        "isthing": bool(isthing),
                    }
                )
        del metadata

        self._seg = panoptic_seg

        self._sinfo = {s["id"]: s for s in segments_info}  # seg id -> seg info
        segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
        areas = areas.numpy()
        sorted_idxs = np.argsort(-areas)
        self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
        self._seg_ids = self._seg_ids.tolist()
        for sid, area in zip(self._seg_ids, self._seg_areas):
            if sid in self._sinfo:
                self._sinfo[sid]["area"] = float(area)

    def non_empty_mask(self):
        """
        Returns:
            (H, W) array, a mask for all pixels that have a prediction
        """
        empty_ids = []
        for id in self._seg_ids:
            if id not in self._sinfo:
                empty_ids.append(id)
        if len(empty_ids) == 0:
            return np.zeros(self._seg.shape, dtype=np.uint8)
        assert (
            len(empty_ids) == 1
        ), ">1 ids corresponds to no labels. This is currently not supported"
        return (self._seg != empty_ids[0]).numpy().astype(bool)

    def semantic_masks(self):
        for sid in self._seg_ids:
            sinfo = self._sinfo.get(sid)
            if sinfo is None or sinfo["isthing"]:
                # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
                continue
            yield (self._seg == sid).numpy().astype(bool), sinfo

    def instance_masks(self):
        for sid in self._seg_ids:
            sinfo = self._sinfo.get(sid)
            if sinfo is None or not sinfo["isthing"]:
                continue
            mask = (self._seg == sid).numpy().astype(bool)
            if mask.sum() > 0:
                yield mask, sinfo


def _create_text_labels(classes, scores, class_names, is_crowd=None):
    """
    Args:
        classes (list[int] or None):
        scores (list[float] or None):
        class_names (list[str] or None):
        is_crowd (list[bool] or None):

    Returns:
        list[str] or None
    """
    labels = None
    if classes is not None:
        if class_names is not None and len(class_names) > 0:
            labels = [class_names[i] for i in classes]
        else:
            labels = [str(i) for i in classes]
    if scores is not None:
        if labels is None:
            labels = ["{:.0f}%".format(s * 100) for s in scores]
        else:
            labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
    if labels is not None and is_crowd is not None:
        labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
    return labels


class VisImage:
    def __init__(self, img, scale=1.0):
        """
        Args:
            img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
            scale (float): scale the input image
        """
        self.img = img
        self.scale = scale
        self.width, self.height = img.shape[1], img.shape[0]
        self._setup_figure(img)

    def _setup_figure(self, img):
        """
        Args:
            Same as in :meth:`__init__()`.

        Returns:
            fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
            ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
        """
        fig = mplfigure.Figure(frameon=False)
        self.dpi = fig.get_dpi()
        # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
        # (https://github.com/matplotlib/matplotlib/issues/15363)
        fig.set_size_inches(
            (self.width * self.scale + 1e-2) / self.dpi,
            (self.height * self.scale + 1e-2) / self.dpi,
        )
        self.canvas = FigureCanvasAgg(fig)
        # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
        ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
        ax.axis("off")
        self.fig = fig
        self.ax = ax
        self.reset_image(img)

    def reset_image(self, img):
        """
        Args:
            img: same as in __init__
        """
        img = img.astype("uint8")
        self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")

    def save(self, filepath):
        """
        Args:
            filepath (str): a string that contains the absolute path, including the file name, where
                the visualized image will be saved.
        """
        self.fig.savefig(filepath)

    def get_image(self):
        """
        Returns:
            ndarray:
                the visualized image of shape (H, W, 3) (RGB) in uint8 type.
                The shape is scaled w.r.t the input image using the given `scale` argument.
        """
        canvas = self.canvas
        s, (width, height) = canvas.print_to_buffer()
        # buf = io.BytesIO()  # works for cairo backend
        # canvas.print_rgba(buf)
        # width, height = self.width, self.height
        # s = buf.getvalue()

        buffer = np.frombuffer(s, dtype="uint8")

        img_rgba = buffer.reshape(height, width, 4)
        rgb, alpha = np.split(img_rgba, [3], axis=2)
        return rgb.astype("uint8")


class Visualizer:
    """
    Visualizer that draws data about detection/segmentation on images.

    It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
    that draw primitive objects to images, as well as high-level wrappers like
    `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
    that draw composite data in some pre-defined style.

    Note that the exact visualization style for the high-level wrappers are subject to change.
    Style such as color, opacity, label contents, visibility of labels, or even the visibility
    of objects themselves (e.g. when the object is too small) may change according
    to different heuristics, as long as the results still look visually reasonable.

    To obtain a consistent style, you can implement custom drawing functions with the
    abovementioned primitive methods instead. If you need more customized visualization
    styles, you can process the data yourself following their format documented in
    tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
    intend to satisfy everyone's preference on drawing styles.

    This visualizer focuses on high rendering quality rather than performance. It is not
    designed to be used for real-time applications.
    """

    # TODO implement a fast, rasterized version using OpenCV

    def __init__(
        self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, font_size_scale=1.0
    ):
        """
        Args:
            img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
                the height and width of the image respectively. C is the number of
                color channels. The image is required to be in RGB format since that
                is a requirement of the Matplotlib library. The image is also expected
                to be in the range [0, 255].
            metadata (Metadata): dataset metadata (e.g. class names and colors)
            instance_mode (ColorMode): defines one of the pre-defined style for drawing
                instances on an image.
            font_size_scale: extra scaling of font size on top of default font size
        """
        self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
        if metadata is None:
            metadata = MetadataCatalog.get("__nonexist__")
        self.metadata = metadata
        self.output = VisImage(self.img, scale=scale)
        self.cpu_device = torch.device("cpu")

        # too small texts are useless, therefore clamp to 9
        self._default_font_size = (
            max(np.sqrt(self.output.height * self.output.width) // 90, 10 // scale)
            * font_size_scale
        )
        self._instance_mode = instance_mode
        self.keypoint_threshold = _KEYPOINT_THRESHOLD

    def draw_instance_predictions(self, predictions, jittering: bool = True):
        """
        Draw instance-level prediction results on an image.

        Args:
            predictions (Instances): the output of an instance detection/segmentation
                model. Following fields will be used to draw:
                "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
            jittering: if True, in color mode SEGMENTATION, randomly jitter the colors per class
                to distinguish instances from the same class

        Returns:
            output (VisImage): image object with visualizations.
        """
        boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
        scores = predictions.scores if predictions.has("scores") else None
        classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
        labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
        keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None

        if predictions.has("pred_masks"):
            masks = np.asarray(predictions.pred_masks)
            masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
        else:
            masks = None

        if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
            colors = (
                [self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
                if jittering
                else [
                    tuple(mplc.to_rgb([x / 255 for x in self.metadata.thing_colors[c]]))
                    for c in classes
                ]
            )

            alpha = 0.8
        else:
            colors = None
            alpha = 0.5

        if self._instance_mode == ColorMode.IMAGE_BW:
            self.output.reset_image(
                self._create_grayscale_image(
                    (predictions.pred_masks.any(dim=0) > 0).numpy()
                    if predictions.has("pred_masks")
                    else None
                )
            )
            alpha = 0.3

        self.overlay_instances(
            masks=masks,
            boxes=boxes,
            labels=labels,
            keypoints=keypoints,
            assigned_colors=colors,
            alpha=alpha,
        )
        return self.output

    def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8):
        """
        Draw semantic segmentation predictions/labels.

        Args:
            sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
                Each value is the integer label of the pixel.
            area_threshold (int): segments with less than `area_threshold` are not drawn.
            alpha (float): the larger it is, the more opaque the segmentations are.

        Returns:
            output (VisImage): image object with visualizations.
        """
        if isinstance(sem_seg, torch.Tensor):
            sem_seg = sem_seg.numpy()
        labels, areas = np.unique(sem_seg, return_counts=True)
        sorted_idxs = np.argsort(-areas).tolist()
        labels = labels[sorted_idxs]
        for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
            try:
                mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
            except (AttributeError, IndexError):
                mask_color = None

            binary_mask = (sem_seg == label).astype(np.uint8)
            text = self.metadata.stuff_classes[label]
            self.draw_binary_mask(
                binary_mask,
                color=mask_color,
                edge_color=_OFF_WHITE,
                text=text,
                alpha=alpha,
                area_threshold=area_threshold,
            )
        return self.output

    def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
        """
        Draw panoptic prediction annotations or results.

        Args:
            panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
                segment.
            segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
                If it is a ``list[dict]``, each dict contains keys "id", "category_id".
                If None, category id of each pixel is computed by
                ``pixel // metadata.label_divisor``.
            area_threshold (int): stuff segments with less than `area_threshold` are not drawn.

        Returns:
            output (VisImage): image object with visualizations.
        """
        pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)

        if self._instance_mode == ColorMode.IMAGE_BW:
            self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))

        # draw mask for all semantic segments first i.e. "stuff"
        for mask, sinfo in pred.semantic_masks():
            category_idx = sinfo["category_id"]
            try:
                mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
            except AttributeError:
                mask_color = None

            text = self.metadata.stuff_classes[category_idx]
            self.draw_binary_mask(
                mask,
                color=mask_color,
                edge_color=_OFF_WHITE,
                text=text,
                alpha=alpha,
                area_threshold=area_threshold,
            )

        # draw mask for all instances second
        all_instances = list(pred.instance_masks())
        if len(all_instances) == 0:
            return self.output
        masks, sinfo = list(zip(*all_instances))
        category_ids = [x["category_id"] for x in sinfo]

        try:
            scores = [x["score"] for x in sinfo]
        except KeyError:
            scores = None
        labels = _create_text_labels(
            category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
        )

        try:
            colors = [
                self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
            ]
        except AttributeError:
            colors = None
        self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)

        return self.output

    draw_panoptic_seg_predictions = draw_panoptic_seg  # backward compatibility

    def draw_dataset_dict(self, dic):
        """
        Draw annotations/segmentations in Detectron2 Dataset format.

        Args:
            dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.

        Returns:
            output (VisImage): image object with visualizations.
        """
        annos = dic.get("annotations", None)
        if annos:
            if "segmentation" in annos[0]:
                masks = [x["segmentation"] for x in annos]
            else:
                masks = None
            if "keypoints" in annos[0]:
                keypts = [x["keypoints"] for x in annos]
                keypts = np.array(keypts).reshape(len(annos), -1, 3)
            else:
                keypts = None

            boxes = [
                (
                    BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
                    if len(x["bbox"]) == 4
                    else x["bbox"]
                )
                for x in annos
            ]

            colors = None
            category_ids = [x["category_id"] for x in annos]
            if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
                colors = [
                    self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
                    for c in category_ids
                ]
            names = self.metadata.get("thing_classes", None)
            labels = _create_text_labels(
                category_ids,
                scores=None,
                class_names=names,
                is_crowd=[x.get("iscrowd", 0) for x in annos],
            )
            self.overlay_instances(
                labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors
            )

        sem_seg = dic.get("sem_seg", None)
        if sem_seg is None and "sem_seg_file_name" in dic:
            with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
                sem_seg = Image.open(f)
                sem_seg = np.asarray(sem_seg, dtype="uint8")
        if sem_seg is not None:
            self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)

        pan_seg = dic.get("pan_seg", None)
        if pan_seg is None and "pan_seg_file_name" in dic:
            with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
                pan_seg = Image.open(f)
                pan_seg = np.asarray(pan_seg)
                from panopticapi.utils import rgb2id

                pan_seg = rgb2id(pan_seg)
        if pan_seg is not None:
            segments_info = dic["segments_info"]
            pan_seg = torch.tensor(pan_seg)
            self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5)
        return self.output

    def overlay_instances(
        self,
        *,
        boxes=None,
        labels=None,
        masks=None,
        keypoints=None,
        assigned_colors=None,
        alpha=0.5,
    ):
        """
        Args:
            boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
                or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
                or a :class:`RotatedBoxes`,
                or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
                for the N objects in a single image,
            labels (list[str]): the text to be displayed for each instance.
            masks (masks-like object): Supported types are:

                * :class:`detectron2.structures.PolygonMasks`,
                  :class:`detectron2.structures.BitMasks`.
                * list[list[ndarray]]: contains the segmentation masks for all objects in one image.
                  The first level of the list corresponds to individual instances. The second
                  level to all the polygon that compose the instance, and the third level
                  to the polygon coordinates. The third level should have the format of
                  [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
                * list[ndarray]: each ndarray is a binary mask of shape (H, W).
                * list[dict]: each dict is a COCO-style RLE.
            keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
                where the N is the number of instances and K is the number of keypoints.
                The last dimension corresponds to (x, y, visibility or score).
            assigned_colors (list[matplotlib.colors]): a list of colors, where each color
                corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
                for full list of formats that the colors are accepted in.
        Returns:
            output (VisImage): image object with visualizations.
        """
        num_instances = 0
        if boxes is not None:
            boxes = self._convert_boxes(boxes)
            num_instances = len(boxes)
        if masks is not None:
            masks = self._convert_masks(masks)
            if num_instances:
                assert len(masks) == num_instances
            else:
                num_instances = len(masks)
        if keypoints is not None:
            if num_instances:
                assert len(keypoints) == num_instances
            else:
                num_instances = len(keypoints)
            keypoints = self._convert_keypoints(keypoints)
        if labels is not None:
            assert len(labels) == num_instances
        if assigned_colors is None:
            assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
        if num_instances == 0:
            return self.output
        if boxes is not None and boxes.shape[1] == 5:
            return self.overlay_rotated_instances(
                boxes=boxes, labels=labels, assigned_colors=assigned_colors
            )

        # Display in largest to smallest order to reduce occlusion.
        areas = None
        if boxes is not None:
            areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
        elif masks is not None:
            areas = np.asarray([x.area() for x in masks])

        if areas is not None:
            sorted_idxs = np.argsort(-areas).tolist()
            # Re-order overlapped instances in descending order.
            boxes = boxes[sorted_idxs] if boxes is not None else None
            labels = [labels[k] for k in sorted_idxs] if labels is not None else None
            masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
            assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
            keypoints = keypoints[sorted_idxs] if keypoints is not None else None

        for i in range(num_instances):
            color = assigned_colors[i]
            if boxes is not None:
                self.draw_box(boxes[i], edge_color=color)

            if masks is not None:
                for segment in masks[i].polygons:
                    self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)

            if labels is not None:
                # first get a box
                if boxes is not None:
                    x0, y0, x1, y1 = boxes[i]
                    text_pos = (x0, y0)  # if drawing boxes, put text on the box corner.
                    horiz_align = "left"
                elif masks is not None:
                    # skip small mask without polygon
                    if len(masks[i].polygons) == 0:
                        continue

                    x0, y0, x1, y1 = masks[i].bbox()

                    # draw text in the center (defined by median) when box is not drawn
                    # median is less sensitive to outliers.
                    text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
                    horiz_align = "center"
                else:
                    continue  # drawing the box confidence for keypoints isn't very useful.
                # for small objects, draw text at the side to avoid occlusion
                instance_area = (y1 - y0) * (x1 - x0)
                if (
                    instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
                    or y1 - y0 < 40 * self.output.scale
                ):
                    if y1 >= self.output.height - 5:
                        text_pos = (x1, y0)
                    else:
                        text_pos = (x0, y1)

                height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
                lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
                font_size = (
                    np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
                    * 0.5
                    * self._default_font_size
                )
                self.draw_text(
                    labels[i],
                    text_pos,
                    color=lighter_color,
                    horizontal_alignment=horiz_align,
                    font_size=font_size,
                )

        # draw keypoints
        if keypoints is not None:
            for keypoints_per_instance in keypoints:
                self.draw_and_connect_keypoints(keypoints_per_instance)

        return self.output

    def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
        """
        Args:
            boxes (ndarray): an Nx5 numpy array of
                (x_center, y_center, width, height, angle_degrees) format
                for the N objects in a single image.
            labels (list[str]): the text to be displayed for each instance.
            assigned_colors (list[matplotlib.colors]): a list of colors, where each color
                corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
                for full list of formats that the colors are accepted in.

        Returns:
            output (VisImage): image object with visualizations.
        """
        num_instances = len(boxes)

        if assigned_colors is None:
            assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
        if num_instances == 0:
            return self.output

        # Display in largest to smallest order to reduce occlusion.
        if boxes is not None:
            areas = boxes[:, 2] * boxes[:, 3]

        sorted_idxs = np.argsort(-areas).tolist()
        # Re-order overlapped instances in descending order.
        boxes = boxes[sorted_idxs]
        labels = [labels[k] for k in sorted_idxs] if labels is not None else None
        colors = [assigned_colors[idx] for idx in sorted_idxs]

        for i in range(num_instances):
            self.draw_rotated_box_with_label(
                boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
            )

        return self.output

    def draw_and_connect_keypoints(self, keypoints):
        """
        Draws keypoints of an instance and follows the rules for keypoint connections
        to draw lines between appropriate keypoints. This follows color heuristics for
        line color.

        Args:
            keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
                and the last dimension corresponds to (x, y, probability).

        Returns:
            output (VisImage): image object with visualizations.
        """
        visible = {}
        keypoint_names = self.metadata.get("keypoint_names")
        for idx, keypoint in enumerate(keypoints):

            # draw keypoint
            x, y, prob = keypoint
            if prob > self.keypoint_threshold:
                self.draw_circle((x, y), color=_RED)
                if keypoint_names:
                    keypoint_name = keypoint_names[idx]
                    visible[keypoint_name] = (x, y)

        if self.metadata.get("keypoint_connection_rules"):
            for kp0, kp1, color in self.metadata.keypoint_connection_rules:
                if kp0 in visible and kp1 in visible:
                    x0, y0 = visible[kp0]
                    x1, y1 = visible[kp1]
                    color = tuple(x / 255.0 for x in color)
                    self.draw_line([x0, x1], [y0, y1], color=color)

        # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
        # Note that this strategy is specific to person keypoints.
        # For other keypoints, it should just do nothing
        try:
            ls_x, ls_y = visible["left_shoulder"]
            rs_x, rs_y = visible["right_shoulder"]
            mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
        except KeyError:
            pass
        else:
            # draw line from nose to mid-shoulder
            nose_x, nose_y = visible.get("nose", (None, None))
            if nose_x is not None:
                self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)

            try:
                # draw line from mid-shoulder to mid-hip
                lh_x, lh_y = visible["left_hip"]
                rh_x, rh_y = visible["right_hip"]
            except KeyError:
                pass
            else:
                mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
                self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
        return self.output

    """
    Primitive drawing functions:
    """

    def draw_text(
        self,
        text,
        position,
        *,
        font_size=None,
        color="g",
        horizontal_alignment="center",
        rotation=0,
    ):
        """
        Args:
            text (str): class label
            position (tuple): a tuple of the x and y coordinates to place text on image.
            font_size (int, optional): font of the text. If not provided, a font size
                proportional to the image width is calculated and used.
            color: color of the text. Refer to `matplotlib.colors` for full list
                of formats that are accepted.
            horizontal_alignment (str): see `matplotlib.text.Text`
            rotation: rotation angle in degrees CCW

        Returns:
            output (VisImage): image object with text drawn.
        """
        if not font_size:
            font_size = self._default_font_size

        # since the text background is dark, we don't want the text to be dark
        color = np.maximum(list(mplc.to_rgb(color)), 0.2)
        color[np.argmax(color)] = max(0.8, np.max(color))

        x, y = position
        self.output.ax.text(
            x,
            y,
            text,
            size=font_size * self.output.scale,
            family="sans-serif",
            bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
            verticalalignment="top",
            horizontalalignment=horizontal_alignment,
            color=color,
            zorder=10,
            rotation=rotation,
        )
        return self.output

    def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
        """
        Args:
            box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
                are the coordinates of the image's top left corner. x1 and y1 are the
                coordinates of the image's bottom right corner.
            alpha (float): blending efficient. Smaller values lead to more transparent masks.
            edge_color: color of the outline of the box. Refer to `matplotlib.colors`
                for full list of formats that are accepted.
            line_style (string): the string to use to create the outline of the boxes.

        Returns:
            output (VisImage): image object with box drawn.
        """
        x0, y0, x1, y1 = box_coord
        width = x1 - x0
        height = y1 - y0

        linewidth = max(self._default_font_size / 4, 1)

        self.output.ax.add_patch(
            mpl.patches.Rectangle(
                (x0, y0),
                width,
                height,
                fill=False,
                edgecolor=edge_color,
                linewidth=linewidth * self.output.scale,
                alpha=alpha,
                linestyle=line_style,
            )
        )
        return self.output

    def draw_rotated_box_with_label(
        self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
    ):
        """
        Draw a rotated box with label on its top-left corner.

        Args:
            rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
                where cnt_x and cnt_y are the center coordinates of the box.
                w and h are the width and height of the box. angle represents how
                many degrees the box is rotated CCW with regard to the 0-degree box.
            alpha (float): blending efficient. Smaller values lead to more transparent masks.
            edge_color: color of the outline of the box. Refer to `matplotlib.colors`
                for full list of formats that are accepted.
            line_style (string): the string to use to create the outline of the boxes.
            label (string): label for rotated box. It will not be rendered when set to None.

        Returns:
            output (VisImage): image object with box drawn.
        """
        cnt_x, cnt_y, w, h, angle = rotated_box
        area = w * h
        # use thinner lines when the box is small
        linewidth = self._default_font_size / (
            6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
        )

        theta = angle * math.pi / 180.0
        c = math.cos(theta)
        s = math.sin(theta)
        rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
        # x: left->right ; y: top->down
        rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
        for k in range(4):
            j = (k + 1) % 4
            self.draw_line(
                [rotated_rect[k][0], rotated_rect[j][0]],
                [rotated_rect[k][1], rotated_rect[j][1]],
                color=edge_color,
                linestyle="--" if k == 1 else line_style,
                linewidth=linewidth,
            )

        if label is not None:
            text_pos = rotated_rect[1]  # topleft corner

            height_ratio = h / np.sqrt(self.output.height * self.output.width)
            label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
            font_size = (
                np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
            )
            self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)

        return self.output

    def draw_circle(self, circle_coord, color, radius=3):
        """
        Args:
            circle_coord (list(int) or tuple(int)): contains the x and y coordinates
                of the center of the circle.
            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            radius (int): radius of the circle.

        Returns:
            output (VisImage): image object with box drawn.
        """
        x, y = circle_coord
        self.output.ax.add_patch(
            mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
        )
        return self.output

    def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
        """
        Args:
            x_data (list[int]): a list containing x values of all the points being drawn.
                Length of list should match the length of y_data.
            y_data (list[int]): a list containing y values of all the points being drawn.
                Length of list should match the length of x_data.
            color: color of the line. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
                for a full list of formats that are accepted.
            linewidth (float or None): width of the line. When it's None,
                a default value will be computed and used.

        Returns:
            output (VisImage): image object with line drawn.
        """
        if linewidth is None:
            linewidth = self._default_font_size / 3
        linewidth = max(linewidth, 1)
        self.output.ax.add_line(
            mpl.lines.Line2D(
                x_data,
                y_data,
                linewidth=linewidth * self.output.scale,
                color=color,
                linestyle=linestyle,
            )
        )
        return self.output

    def draw_binary_mask(
        self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=10
    ):
        """
        Args:
            binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
                W is the image width. Each value in the array is either a 0 or 1 value of uint8
                type.
            color: color of the mask. Refer to `matplotlib.colors` for a full list of
                formats that are accepted. If None, will pick a random color.
            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
                full list of formats that are accepted.
            text (str): if None, will be drawn on the object
            alpha (float): blending efficient. Smaller values lead to more transparent masks.
            area_threshold (float): a connected component smaller than this area will not be shown.

        Returns:
            output (VisImage): image object with mask drawn.
        """
        if color is None:
            color = random_color(rgb=True, maximum=1)
        color = mplc.to_rgb(color)

        has_valid_segment = False
        binary_mask = binary_mask.astype("uint8")  # opencv needs uint8
        mask = GenericMask(binary_mask, self.output.height, self.output.width)
        shape2d = (binary_mask.shape[0], binary_mask.shape[1])

        if not mask.has_holes:
            # draw polygons for regular masks
            for segment in mask.polygons:
                area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
                if area < (area_threshold or 0):
                    continue
                has_valid_segment = True
                segment = segment.reshape(-1, 2)
                self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
        else:
            # TODO: Use Path/PathPatch to draw vector graphics:
            # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
            rgba = np.zeros(shape2d + (4,), dtype="float32")
            rgba[:, :, :3] = color
            rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
            has_valid_segment = True
            self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))

        if text is not None and has_valid_segment:
            lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
            self._draw_text_in_mask(binary_mask, text, lighter_color)
        return self.output

    def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
        """
        Args:
            soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
            color: color of the mask. Refer to `matplotlib.colors` for a full list of
                formats that are accepted. If None, will pick a random color.
            text (str): if None, will be drawn on the object
            alpha (float): blending efficient. Smaller values lead to more transparent masks.

        Returns:
            output (VisImage): image object with mask drawn.
        """
        if color is None:
            color = random_color(rgb=True, maximum=1)
        color = mplc.to_rgb(color)

        shape2d = (soft_mask.shape[0], soft_mask.shape[1])
        rgba = np.zeros(shape2d + (4,), dtype="float32")
        rgba[:, :, :3] = color
        rgba[:, :, 3] = soft_mask * alpha
        self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))

        if text is not None:
            lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
            binary_mask = (soft_mask > 0.5).astype("uint8")
            self._draw_text_in_mask(binary_mask, text, lighter_color)
        return self.output

    def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
        """
        Args:
            segment: numpy array of shape Nx2, containing all the points in the polygon.
            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
                full list of formats that are accepted. If not provided, a darker shade
                of the polygon color will be used instead.
            alpha (float): blending efficient. Smaller values lead to more transparent masks.

        Returns:
            output (VisImage): image object with polygon drawn.
        """
        if edge_color is None:
            # make edge color darker than the polygon color
            if alpha > 0.8:
                edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
            else:
                edge_color = color
        edge_color = mplc.to_rgb(edge_color) + (1,)

        polygon = mpl.patches.Polygon(
            segment,
            fill=True,
            facecolor=mplc.to_rgb(color) + (alpha,),
            edgecolor=edge_color,
            linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
        )
        self.output.ax.add_patch(polygon)
        return self.output

    """
    Internal methods:
    """

    def _jitter(self, color):
        """
        Randomly modifies given color to produce a slightly different color than the color given.

        Args:
            color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
                picked. The values in the list are in the [0.0, 1.0] range.

        Returns:
            jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
                color after being jittered. The values in the list are in the [0.0, 1.0] range.
        """
        color = mplc.to_rgb(color)
        vec = np.random.rand(3)
        # better to do it in another color space
        vec = vec / np.linalg.norm(vec) * 0.5
        res = np.clip(vec + color, 0, 1)
        return tuple(res)

    def _create_grayscale_image(self, mask=None):
        """
        Create a grayscale version of the original image.
        The colors in masked area, if given, will be kept.
        """
        img_bw = self.img.astype("f4").mean(axis=2)
        img_bw = np.stack([img_bw] * 3, axis=2)
        if mask is not None:
            img_bw[mask] = self.img[mask]
        return img_bw

    def _change_color_brightness(self, color, brightness_factor):
        """
        Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
        less or more saturation than the original color.

        Args:
            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
                formats that are accepted.
            brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
                0 will correspond to no change, a factor in [-1.0, 0) range will result in
                a darker color and a factor in (0, 1.0] range will result in a lighter color.

        Returns:
            modified_color (tuple[double]): a tuple containing the RGB values of the
                modified color. Each value in the tuple is in the [0.0, 1.0] range.
        """
        assert brightness_factor >= -1.0 and brightness_factor <= 1.0
        color = mplc.to_rgb(color)
        polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
        modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
        modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
        modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
        modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
        return tuple(np.clip(modified_color, 0.0, 1.0))

    def _convert_boxes(self, boxes):
        """
        Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
        """
        if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
            return boxes.tensor.detach().numpy()
        else:
            return np.asarray(boxes)

    def _convert_masks(self, masks_or_polygons):
        """
        Convert different format of masks or polygons to a tuple of masks and polygons.

        Returns:
            list[GenericMask]:
        """

        m = masks_or_polygons
        if isinstance(m, PolygonMasks):
            m = m.polygons
        if isinstance(m, BitMasks):
            m = m.tensor.numpy()
        if isinstance(m, torch.Tensor):
            m = m.numpy()
        ret = []
        for x in m:
            if isinstance(x, GenericMask):
                ret.append(x)
            else:
                ret.append(GenericMask(x, self.output.height, self.output.width))
        return ret

    def _draw_text_in_mask(self, binary_mask, text, color):
        """
        Find proper places to draw text given a binary mask.
        """
        # TODO sometimes drawn on wrong objects. the heuristics here can improve.
        _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
        if stats[1:, -1].size == 0:
            return
        largest_component_id = np.argmax(stats[1:, -1]) + 1

        # draw text on the largest component, as well as other very large components.
        for cid in range(1, _num_cc):
            if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
                # median is more stable than centroid
                # center = centroids[largest_component_id]
                center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
                self.draw_text(text, center, color=color)

    def _convert_keypoints(self, keypoints):
        if isinstance(keypoints, Keypoints):
            keypoints = keypoints.tensor
        keypoints = np.asarray(keypoints)
        return keypoints

    def get_output(self):
        """
        Returns:
            output (VisImage): the image output containing the visualizations added
            to the image.
        """
        return self.output