File size: 13,609 Bytes
5edd223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import os
from datetime import datetime

import gradio as gr
import numpy as np
import torch
device = torch.device('cpu')  # Explicitly use CPU if desired

from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image

from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="Abhilashvj/stable-diffusion-inpainting-copy", #"runwayml/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )

    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint", 
        action="store_true", 
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args

def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
    base_ckpt=args.base_model_path,
    attn_ckpt=repo_path,
    attn_ckpt_version="mix",
    weight_dtype=init_weight_dtype(args.mixed_precision),
    use_tf32=args.allow_tf32,
    # device='cuda'
    device='cpu'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    # device='cuda', 
    device='cpu'
)

def submit_function(
    person_image,
    cloth_image,
    cloth_type,
    num_inference_steps,
    guidance_scale,
    seed,
    show_type
):
    person_image, mask = person_image["background"], person_image["layers"][0]
    mask = Image.open(mask).convert("L")
    if len(np.unique(np.array(mask))) == 1:
        mask = None
    else:
        mask = np.array(mask)
        mask[mask > 0] = 255
        mask = Image.fromarray(mask)

    tmp_folder = args.output_dir
    date_str = datetime.now().strftime("%Y%m%d%H%M%S")
    result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
    if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
        os.makedirs(os.path.join(tmp_folder, date_str[:8]))

    generator = None
    if seed != -1:
        # generator = torch.Generator(device='cuda').manual_seed(seed)
        generator = torch.Generator(device='cpu').manual_seed(seed)

    person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
    
    # Process mask
    if mask is not None:
        mask = resize_and_crop(mask, (args.width, args.height))
    else:
        mask = automasker(
            person_image,
            cloth_type
        )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    # try:
    result_image = pipeline(
        image=person_image,
        condition_image=cloth_image,
        mask=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    )[0]
    # except Exception as e:
    #     raise gr.Error(
    #         "An error occurred. Please try again later: {}".format(e)
    #     )
    
    # Post-process
    masked_person = vis_mask(person_image, mask)
    save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
    save_result_image.save(result_save_path)
    if show_type == "result only":
        return result_image
    else:
        width, height = person_image.size
        if show_type == "input & result":
            condition_width = width // 2
            conditions = image_grid([person_image, cloth_image], 2, 1)
        else:
            condition_width = width // 3
            conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
        conditions = conditions.resize((condition_width, height), Image.NEAREST)
        new_result_image = Image.new("RGB", (width + condition_width + 5, height))
        new_result_image.paste(conditions, (0, 0))
        new_result_image.paste(result_image, (condition_width + 5, 0))
    return new_result_image


def person_example_fn(image_path):
    return image_path

HEADER = """
<h1 style="text-align: center;"> 
    Fashioble
</h1>

"""

def app_gradio():
    with gr.Blocks(title="CatVTON") as demo:
        gr.Markdown(HEADER)
        with gr.Row():
            with gr.Column(scale=1, min_width=350):
                with gr.Row():
                    image_path = gr.Image(
                        type="filepath",
                        interactive=True,
                        visible=False,
                    )
                    person_image = gr.ImageEditor(
                        interactive=True, label="Person Image", type="filepath"
                    )

                with gr.Row():
                    with gr.Column(scale=1, min_width=230):
                        cloth_image = gr.Image(
                            interactive=True, label="Condition Image", type="filepath"
                        )
                    with gr.Column(scale=1, min_width=120):
                        gr.Markdown(
                            '<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
                        )
                        cloth_type = gr.Radio(
                            label="Try-On Cloth Type",
                            choices=["upper", "lower", "overall"],
                            value="upper",
                        )


                submit = gr.Button("Submit")
                gr.Markdown(
                    '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
                )
                
                gr.Markdown(
                    '<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
                )
                with gr.Accordion("Advanced Options", open=False):
                    num_inference_steps = gr.Slider(
                        label="Inference Step", minimum=10, maximum=100, step=5, value=50
                    )
                    # Guidence Scale
                    guidance_scale = gr.Slider(
                        label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
                    )
                    # Random Seed
                    seed = gr.Slider(
                        label="Seed", minimum=-1, maximum=10000, step=1, value=42
                    )
                    show_type = gr.Radio(
                        label="Show Type",
                        choices=["result only", "input & result", "input & mask & result"],
                        value="input & mask & result",
                    )

            with gr.Column(scale=2, min_width=500):
                result_image = gr.Image(interactive=False, label="Result")
                with gr.Row():
                    # Photo Examples
                    root_path = "resource/demo/example"
                    with gr.Column():
                        men_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "men", _)
                                for _ in os.listdir(os.path.join(root_path, "person", "men"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Person Examples ①",
                        )
                        women_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "women", _)
                                for _ in os.listdir(os.path.join(root_path, "person", "women"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Person Examples ②",
                        )
                        gr.Markdown(
                            '<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
                        )
                    with gr.Column():
                        condition_upper_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "upper", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Condition Upper Examples",
                        )
                        condition_overall_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "overall", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Condition Overall Examples",
                        )
                        condition_person_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "person", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "person"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Condition Reference Person Examples",
                        )
                        gr.Markdown(
                            '<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
                        )

            image_path.change(
                person_example_fn, inputs=image_path, outputs=person_image
            )

            submit.click(
                submit_function,
                [
                    person_image,
                    cloth_image,
                    cloth_type,
                    num_inference_steps,
                    guidance_scale,
                    seed,
                    show_type,
                ],
                result_image,
            )
    demo.queue().launch(share=True, show_error=True)


if __name__ == "__main__":
    app_gradio()