File size: 13,609 Bytes
5edd223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import argparse
import os
from datetime import datetime
import gradio as gr
import numpy as np
import torch
device = torch.device('cpu') # Explicitly use CPU if desired
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="Abhilashvj/stable-diffusion-inpainting-copy", #"runwayml/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
# device='cuda'
device='cpu'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
# device='cuda',
device='cpu'
)
def submit_function(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
# generator = torch.Generator(device='cuda').manual_seed(seed)
generator = torch.Generator(device='cpu').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
# try:
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# except Exception as e:
# raise gr.Error(
# "An error occurred. Please try again later: {}".format(e)
# )
# Post-process
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
HEADER = """
<h1 style="text-align: center;">
Fashioble
</h1>
"""
def app_gradio():
with gr.Blocks(title="CatVTON") as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True, label="Person Image", type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit = gr.Button("Submit")
gr.Markdown(
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps = gr.Slider(
label="Inference Step", minimum=10, maximum=100, step=5, value=50
)
# Guidence Scale
guidance_scale = gr.Slider(
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
)
# Random Seed
seed = gr.Slider(
label="Seed", minimum=-1, maximum=10000, step=1, value=42
)
show_type = gr.Radio(
label="Show Type",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
)
with gr.Column(scale=2, min_width=500):
result_image = gr.Image(interactive=False, label="Result")
with gr.Row():
# Photo Examples
root_path = "resource/demo/example"
with gr.Column():
men_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "men", _)
for _ in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path,
label="Person Examples ①",
)
women_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "women", _)
for _ in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path,
label="Person Examples ②",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
)
with gr.Column():
condition_upper_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", _)
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image,
label="Condition Upper Examples",
)
condition_overall_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", _)
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image,
label="Condition Overall Examples",
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", _)
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image,
label="Condition Reference Person Examples",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
)
image_path.change(
person_example_fn, inputs=image_path, outputs=person_image
)
submit.click(
submit_function,
[
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type,
],
result_image,
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio()
|