|
|
|
|
|
|
|
""" |
|
MIT License |
|
Copyright (c) 2019 Microsoft |
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to deal |
|
in the Software without restriction, including without limitation the rights |
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
copies of the Software, and to permit persons to whom the Software is |
|
furnished to do so, subject to the following conditions: |
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from detectron2.layers import ShapeSpec |
|
from detectron2.modeling.backbone import BACKBONE_REGISTRY |
|
from detectron2.modeling.backbone.backbone import Backbone |
|
|
|
from .hrnet import build_pose_hrnet_backbone |
|
|
|
|
|
class HRFPN(Backbone): |
|
"""HRFPN (High Resolution Feature Pyramids) |
|
Transforms outputs of HRNet backbone so they are suitable for the ROI_heads |
|
arXiv: https://arxiv.org/abs/1904.04514 |
|
Adapted from https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/hrfpn.py |
|
Args: |
|
bottom_up: (list) output of HRNet |
|
in_features (list): names of the input features (output of HRNet) |
|
in_channels (list): number of channels for each branch |
|
out_channels (int): output channels of feature pyramids |
|
n_out_features (int): number of output stages |
|
pooling (str): pooling for generating feature pyramids (from {MAX, AVG}) |
|
share_conv (bool): Have one conv per output, or share one with all the outputs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
bottom_up, |
|
in_features, |
|
n_out_features, |
|
in_channels, |
|
out_channels, |
|
pooling="AVG", |
|
share_conv=False, |
|
): |
|
super(HRFPN, self).__init__() |
|
assert isinstance(in_channels, list) |
|
self.bottom_up = bottom_up |
|
self.in_features = in_features |
|
self.n_out_features = n_out_features |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.num_ins = len(in_channels) |
|
self.share_conv = share_conv |
|
|
|
if self.share_conv: |
|
self.fpn_conv = nn.Conv2d( |
|
in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1 |
|
) |
|
else: |
|
self.fpn_conv = nn.ModuleList() |
|
for _ in range(self.n_out_features): |
|
self.fpn_conv.append( |
|
nn.Conv2d( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
) |
|
|
|
|
|
self.interp_conv = nn.ModuleList() |
|
for i in range(len(self.in_features)): |
|
self.interp_conv.append( |
|
nn.Sequential( |
|
nn.ConvTranspose2d( |
|
in_channels=in_channels[i], |
|
out_channels=in_channels[i], |
|
kernel_size=4, |
|
stride=2**i, |
|
padding=0, |
|
output_padding=0, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(in_channels[i], momentum=0.1), |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
|
|
|
|
self.reduction_pooling_conv = nn.ModuleList() |
|
for i in range(self.n_out_features): |
|
self.reduction_pooling_conv.append( |
|
nn.Sequential( |
|
nn.Conv2d(sum(in_channels), out_channels, kernel_size=2**i, stride=2**i), |
|
nn.BatchNorm2d(out_channels, momentum=0.1), |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
|
|
if pooling == "MAX": |
|
self.pooling = F.max_pool2d |
|
else: |
|
self.pooling = F.avg_pool2d |
|
|
|
self._out_features = [] |
|
self._out_feature_channels = {} |
|
self._out_feature_strides = {} |
|
|
|
for i in range(self.n_out_features): |
|
self._out_features.append("p%d" % (i + 1)) |
|
self._out_feature_channels.update({self._out_features[-1]: self.out_channels}) |
|
self._out_feature_strides.update({self._out_features[-1]: 2 ** (i + 2)}) |
|
|
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, a=1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, inputs): |
|
bottom_up_features = self.bottom_up(inputs) |
|
assert len(bottom_up_features) == len(self.in_features) |
|
inputs = [bottom_up_features[f] for f in self.in_features] |
|
|
|
outs = [] |
|
for i in range(len(inputs)): |
|
outs.append(self.interp_conv[i](inputs[i])) |
|
shape_2 = min(o.shape[2] for o in outs) |
|
shape_3 = min(o.shape[3] for o in outs) |
|
out = torch.cat([o[:, :, :shape_2, :shape_3] for o in outs], dim=1) |
|
outs = [] |
|
for i in range(self.n_out_features): |
|
outs.append(self.reduction_pooling_conv[i](out)) |
|
for i in range(len(outs)): |
|
outs[-1 - i] = outs[-1 - i][ |
|
:, :, : outs[-1].shape[2] * 2**i, : outs[-1].shape[3] * 2**i |
|
] |
|
outputs = [] |
|
for i in range(len(outs)): |
|
if self.share_conv: |
|
outputs.append(self.fpn_conv(outs[i])) |
|
else: |
|
outputs.append(self.fpn_conv[i](outs[i])) |
|
|
|
assert len(self._out_features) == len(outputs) |
|
return dict(zip(self._out_features, outputs)) |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def build_hrfpn_backbone(cfg, input_shape: ShapeSpec) -> HRFPN: |
|
|
|
in_channels = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS |
|
in_features = ["p%d" % (i + 1) for i in range(cfg.MODEL.HRNET.STAGE4.NUM_BRANCHES)] |
|
n_out_features = len(cfg.MODEL.ROI_HEADS.IN_FEATURES) |
|
out_channels = cfg.MODEL.HRNET.HRFPN.OUT_CHANNELS |
|
hrnet = build_pose_hrnet_backbone(cfg, input_shape) |
|
hrfpn = HRFPN( |
|
hrnet, |
|
in_features, |
|
n_out_features, |
|
in_channels, |
|
out_channels, |
|
pooling="AVG", |
|
share_conv=False, |
|
) |
|
|
|
return hrfpn |
|
|