|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from densepose.data.meshes.catalog import MeshCatalog |
|
from densepose.structures.mesh import load_mesh_symmetry |
|
from densepose.structures.transform_data import DensePoseTransformData |
|
|
|
|
|
class DensePoseDataRelative: |
|
""" |
|
Dense pose relative annotations that can be applied to any bounding box: |
|
x - normalized X coordinates [0, 255] of annotated points |
|
y - normalized Y coordinates [0, 255] of annotated points |
|
i - body part labels 0,...,24 for annotated points |
|
u - body part U coordinates [0, 1] for annotated points |
|
v - body part V coordinates [0, 1] for annotated points |
|
segm - 256x256 segmentation mask with values 0,...,14 |
|
To obtain absolute x and y data wrt some bounding box one needs to first |
|
divide the data by 256, multiply by the respective bounding box size |
|
and add bounding box offset: |
|
x_img = x0 + x_norm * w / 256.0 |
|
y_img = y0 + y_norm * h / 256.0 |
|
Segmentation masks are typically sampled to get image-based masks. |
|
""" |
|
|
|
|
|
X_KEY = "dp_x" |
|
|
|
Y_KEY = "dp_y" |
|
|
|
U_KEY = "dp_U" |
|
|
|
V_KEY = "dp_V" |
|
|
|
I_KEY = "dp_I" |
|
|
|
S_KEY = "dp_masks" |
|
|
|
VERTEX_IDS_KEY = "dp_vertex" |
|
|
|
MESH_NAME_KEY = "ref_model" |
|
|
|
N_BODY_PARTS = 14 |
|
|
|
N_PART_LABELS = 24 |
|
MASK_SIZE = 256 |
|
|
|
def __init__(self, annotation, cleanup=False): |
|
self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY]) |
|
self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY]) |
|
if ( |
|
DensePoseDataRelative.I_KEY in annotation |
|
and DensePoseDataRelative.U_KEY in annotation |
|
and DensePoseDataRelative.V_KEY in annotation |
|
): |
|
self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY]) |
|
self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY]) |
|
self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY]) |
|
if ( |
|
DensePoseDataRelative.VERTEX_IDS_KEY in annotation |
|
and DensePoseDataRelative.MESH_NAME_KEY in annotation |
|
): |
|
self.vertex_ids = torch.as_tensor( |
|
annotation[DensePoseDataRelative.VERTEX_IDS_KEY], dtype=torch.long |
|
) |
|
self.mesh_id = MeshCatalog.get_mesh_id(annotation[DensePoseDataRelative.MESH_NAME_KEY]) |
|
if DensePoseDataRelative.S_KEY in annotation: |
|
self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation) |
|
self.device = torch.device("cpu") |
|
if cleanup: |
|
DensePoseDataRelative.cleanup_annotation(annotation) |
|
|
|
def to(self, device): |
|
if self.device == device: |
|
return self |
|
new_data = DensePoseDataRelative.__new__(DensePoseDataRelative) |
|
new_data.x = self.x.to(device) |
|
new_data.y = self.y.to(device) |
|
for attr in ["i", "u", "v", "vertex_ids", "segm"]: |
|
if hasattr(self, attr): |
|
setattr(new_data, attr, getattr(self, attr).to(device)) |
|
if hasattr(self, "mesh_id"): |
|
new_data.mesh_id = self.mesh_id |
|
new_data.device = device |
|
return new_data |
|
|
|
@staticmethod |
|
def extract_segmentation_mask(annotation): |
|
import pycocotools.mask as mask_utils |
|
|
|
|
|
|
|
|
|
poly_specs = annotation[DensePoseDataRelative.S_KEY] |
|
if isinstance(poly_specs, torch.Tensor): |
|
|
|
return poly_specs |
|
segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32) |
|
if isinstance(poly_specs, dict): |
|
if poly_specs: |
|
mask = mask_utils.decode(poly_specs) |
|
segm[mask > 0] = 1 |
|
else: |
|
for i in range(len(poly_specs)): |
|
poly_i = poly_specs[i] |
|
if poly_i: |
|
mask_i = mask_utils.decode(poly_i) |
|
segm[mask_i > 0] = i + 1 |
|
return segm |
|
|
|
@staticmethod |
|
def validate_annotation(annotation): |
|
for key in [ |
|
DensePoseDataRelative.X_KEY, |
|
DensePoseDataRelative.Y_KEY, |
|
]: |
|
if key not in annotation: |
|
return False, "no {key} data in the annotation".format(key=key) |
|
valid_for_iuv_setting = all( |
|
key in annotation |
|
for key in [ |
|
DensePoseDataRelative.I_KEY, |
|
DensePoseDataRelative.U_KEY, |
|
DensePoseDataRelative.V_KEY, |
|
] |
|
) |
|
valid_for_cse_setting = all( |
|
key in annotation |
|
for key in [ |
|
DensePoseDataRelative.VERTEX_IDS_KEY, |
|
DensePoseDataRelative.MESH_NAME_KEY, |
|
] |
|
) |
|
if not valid_for_iuv_setting and not valid_for_cse_setting: |
|
return ( |
|
False, |
|
"expected either {} (IUV setting) or {} (CSE setting) annotations".format( |
|
", ".join( |
|
[ |
|
DensePoseDataRelative.I_KEY, |
|
DensePoseDataRelative.U_KEY, |
|
DensePoseDataRelative.V_KEY, |
|
] |
|
), |
|
", ".join( |
|
[ |
|
DensePoseDataRelative.VERTEX_IDS_KEY, |
|
DensePoseDataRelative.MESH_NAME_KEY, |
|
] |
|
), |
|
), |
|
) |
|
return True, None |
|
|
|
@staticmethod |
|
def cleanup_annotation(annotation): |
|
for key in [ |
|
DensePoseDataRelative.X_KEY, |
|
DensePoseDataRelative.Y_KEY, |
|
DensePoseDataRelative.I_KEY, |
|
DensePoseDataRelative.U_KEY, |
|
DensePoseDataRelative.V_KEY, |
|
DensePoseDataRelative.S_KEY, |
|
DensePoseDataRelative.VERTEX_IDS_KEY, |
|
DensePoseDataRelative.MESH_NAME_KEY, |
|
]: |
|
if key in annotation: |
|
del annotation[key] |
|
|
|
def apply_transform(self, transforms, densepose_transform_data): |
|
self._transform_pts(transforms, densepose_transform_data) |
|
if hasattr(self, "segm"): |
|
self._transform_segm(transforms, densepose_transform_data) |
|
|
|
def _transform_pts(self, transforms, dp_transform_data): |
|
import detectron2.data.transforms as T |
|
|
|
|
|
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 |
|
if do_hflip: |
|
self.x = self.MASK_SIZE - self.x |
|
if hasattr(self, "i"): |
|
self._flip_iuv_semantics(dp_transform_data) |
|
if hasattr(self, "vertex_ids"): |
|
self._flip_vertices() |
|
|
|
for t in transforms.transforms: |
|
if isinstance(t, T.RotationTransform): |
|
xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE |
|
xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale) |
|
self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T |
|
|
|
def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None: |
|
i_old = self.i.clone() |
|
uv_symmetries = dp_transform_data.uv_symmetries |
|
pt_label_symmetries = dp_transform_data.point_label_symmetries |
|
for i in range(self.N_PART_LABELS): |
|
if i + 1 in i_old: |
|
annot_indices_i = i_old == i + 1 |
|
if pt_label_symmetries[i + 1] != i + 1: |
|
self.i[annot_indices_i] = pt_label_symmetries[i + 1] |
|
u_loc = (self.u[annot_indices_i] * 255).long() |
|
v_loc = (self.v[annot_indices_i] * 255).long() |
|
self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to( |
|
device=self.u.device |
|
) |
|
self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to( |
|
device=self.v.device |
|
) |
|
|
|
def _flip_vertices(self): |
|
mesh_info = MeshCatalog[MeshCatalog.get_mesh_name(self.mesh_id)] |
|
mesh_symmetry = ( |
|
load_mesh_symmetry(mesh_info.symmetry) if mesh_info.symmetry is not None else None |
|
) |
|
self.vertex_ids = mesh_symmetry["vertex_transforms"][self.vertex_ids] |
|
|
|
def _transform_segm(self, transforms, dp_transform_data): |
|
import detectron2.data.transforms as T |
|
|
|
|
|
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 |
|
if do_hflip: |
|
self.segm = torch.flip(self.segm, [1]) |
|
self._flip_segm_semantics(dp_transform_data) |
|
|
|
for t in transforms.transforms: |
|
if isinstance(t, T.RotationTransform): |
|
self._transform_segm_rotation(t) |
|
|
|
def _flip_segm_semantics(self, dp_transform_data): |
|
old_segm = self.segm.clone() |
|
mask_label_symmetries = dp_transform_data.mask_label_symmetries |
|
for i in range(self.N_BODY_PARTS): |
|
if mask_label_symmetries[i + 1] != i + 1: |
|
self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1] |
|
|
|
def _transform_segm_rotation(self, rotation): |
|
self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy() |
|
self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :] |
|
self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0] |
|
|