|
|
|
|
|
|
|
|
|
import random |
|
from collections import deque |
|
from typing import Any, Collection, Deque, Iterable, Iterator, List, Sequence |
|
|
|
Loader = Iterable[Any] |
|
|
|
|
|
def _pooled_next(iterator: Iterator[Any], pool: Deque[Any]): |
|
if not pool: |
|
pool.extend(next(iterator)) |
|
return pool.popleft() |
|
|
|
|
|
class CombinedDataLoader: |
|
""" |
|
Combines data loaders using the provided sampling ratios |
|
""" |
|
|
|
BATCH_COUNT = 100 |
|
|
|
def __init__(self, loaders: Collection[Loader], batch_size: int, ratios: Sequence[float]): |
|
self.loaders = loaders |
|
self.batch_size = batch_size |
|
self.ratios = ratios |
|
|
|
def __iter__(self) -> Iterator[List[Any]]: |
|
iters = [iter(loader) for loader in self.loaders] |
|
indices = [] |
|
pool = [deque()] * len(iters) |
|
|
|
while True: |
|
if not indices: |
|
|
|
|
|
k = self.batch_size * self.BATCH_COUNT |
|
indices = random.choices(range(len(self.loaders)), self.ratios, k=k) |
|
try: |
|
batch = [_pooled_next(iters[i], pool[i]) for i in indices[: self.batch_size]] |
|
except StopIteration: |
|
break |
|
indices = indices[self.batch_size :] |
|
yield batch |
|
|