|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import logging |
|
from typing import Any, Dict, List, Tuple |
|
import torch |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.layers import ROIAlign |
|
from detectron2.structures import BoxMode |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from densepose.structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData |
|
|
|
|
|
def build_augmentation(cfg, is_train): |
|
logger = logging.getLogger(__name__) |
|
result = utils.build_augmentation(cfg, is_train) |
|
if is_train: |
|
random_rotation = T.RandomRotation( |
|
cfg.INPUT.ROTATION_ANGLES, expand=False, sample_style="choice" |
|
) |
|
result.append(random_rotation) |
|
logger.info("DensePose-specific augmentation used in training: " + str(random_rotation)) |
|
return result |
|
|
|
|
|
class DatasetMapper: |
|
""" |
|
A customized version of `detectron2.data.DatasetMapper` |
|
""" |
|
|
|
def __init__(self, cfg, is_train=True): |
|
self.augmentation = build_augmentation(cfg, is_train) |
|
|
|
|
|
self.img_format = cfg.INPUT.FORMAT |
|
self.mask_on = ( |
|
cfg.MODEL.MASK_ON or ( |
|
cfg.MODEL.DENSEPOSE_ON |
|
and cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS) |
|
) |
|
self.keypoint_on = cfg.MODEL.KEYPOINT_ON |
|
self.densepose_on = cfg.MODEL.DENSEPOSE_ON |
|
assert not cfg.MODEL.LOAD_PROPOSALS, "not supported yet" |
|
|
|
if self.keypoint_on and is_train: |
|
|
|
self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN) |
|
else: |
|
self.keypoint_hflip_indices = None |
|
|
|
if self.densepose_on: |
|
densepose_transform_srcs = [ |
|
MetadataCatalog.get(ds).densepose_transform_src |
|
for ds in cfg.DATASETS.TRAIN + cfg.DATASETS.TEST |
|
] |
|
assert len(densepose_transform_srcs) > 0 |
|
|
|
|
|
|
|
|
|
|
|
densepose_transform_data_fpath = PathManager.get_local_path(densepose_transform_srcs[0]) |
|
self.densepose_transform_data = DensePoseTransformData.load( |
|
densepose_transform_data_fpath |
|
) |
|
|
|
self.is_train = is_train |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
image, transforms = T.apply_transform_gens(self.augmentation, image) |
|
image_shape = image.shape[:2] |
|
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32")) |
|
|
|
if not self.is_train: |
|
dataset_dict.pop("annotations", None) |
|
return dataset_dict |
|
|
|
for anno in dataset_dict["annotations"]: |
|
if not self.mask_on: |
|
anno.pop("segmentation", None) |
|
if not self.keypoint_on: |
|
anno.pop("keypoints", None) |
|
|
|
|
|
|
|
annos = [ |
|
self._transform_densepose( |
|
utils.transform_instance_annotations( |
|
obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices |
|
), |
|
transforms, |
|
) |
|
for obj in dataset_dict.pop("annotations") |
|
if obj.get("iscrowd", 0) == 0 |
|
] |
|
|
|
if self.mask_on: |
|
self._add_densepose_masks_as_segmentation(annos, image_shape) |
|
|
|
instances = utils.annotations_to_instances(annos, image_shape, mask_format="bitmask") |
|
densepose_annotations = [obj.get("densepose") for obj in annos] |
|
if densepose_annotations and not all(v is None for v in densepose_annotations): |
|
instances.gt_densepose = DensePoseList( |
|
densepose_annotations, instances.gt_boxes, image_shape |
|
) |
|
|
|
dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()] |
|
return dataset_dict |
|
|
|
def _transform_densepose(self, annotation, transforms): |
|
if not self.densepose_on: |
|
return annotation |
|
|
|
|
|
is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation) |
|
if is_valid: |
|
densepose_data = DensePoseDataRelative(annotation, cleanup=True) |
|
densepose_data.apply_transform(transforms, self.densepose_transform_data) |
|
annotation["densepose"] = densepose_data |
|
else: |
|
|
|
|
|
DensePoseDataRelative.cleanup_annotation(annotation) |
|
|
|
|
|
annotation["densepose"] = None |
|
return annotation |
|
|
|
def _add_densepose_masks_as_segmentation( |
|
self, annotations: List[Dict[str, Any]], image_shape_hw: Tuple[int, int] |
|
): |
|
for obj in annotations: |
|
if ("densepose" not in obj) or ("segmentation" in obj): |
|
continue |
|
|
|
segm_dp = torch.zeros_like(obj["densepose"].segm) |
|
segm_dp[obj["densepose"].segm > 0] = 1 |
|
segm_h, segm_w = segm_dp.shape |
|
bbox_segm_dp = torch.tensor((0, 0, segm_h - 1, segm_w - 1), dtype=torch.float32) |
|
|
|
x0, y0, x1, y1 = ( |
|
v.item() for v in BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) |
|
) |
|
segm_aligned = ( |
|
ROIAlign((y1 - y0, x1 - x0), 1.0, 0, aligned=True) |
|
.forward(segm_dp.view(1, 1, *segm_dp.shape), bbox_segm_dp) |
|
.squeeze() |
|
) |
|
image_mask = torch.zeros(*image_shape_hw, dtype=torch.float32) |
|
image_mask[y0:y1, x0:x1] = segm_aligned |
|
|
|
obj["segmentation"] = image_mask >= 0.5 |
|
|