|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Tuple |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.structures import BoxMode, Instances |
|
|
|
from densepose.converters import ToChartResultConverter |
|
from densepose.converters.base import IntTupleBox, make_int_box |
|
from densepose.structures import DensePoseDataRelative, DensePoseList |
|
|
|
|
|
class DensePoseBaseSampler: |
|
""" |
|
Base DensePose sampler to produce DensePose data from DensePose predictions. |
|
Samples for each class are drawn according to some distribution over all pixels estimated |
|
to belong to that class. |
|
""" |
|
|
|
def __init__(self, count_per_class: int = 8): |
|
""" |
|
Constructor |
|
|
|
Args: |
|
count_per_class (int): the sampler produces at most `count_per_class` |
|
samples for each category |
|
""" |
|
self.count_per_class = count_per_class |
|
|
|
def __call__(self, instances: Instances) -> DensePoseList: |
|
""" |
|
Convert DensePose predictions (an instance of `DensePoseChartPredictorOutput`) |
|
into DensePose annotations data (an instance of `DensePoseList`) |
|
""" |
|
boxes_xyxy_abs = instances.pred_boxes.tensor.clone().cpu() |
|
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) |
|
dp_datas = [] |
|
for i in range(len(boxes_xywh_abs)): |
|
annotation_i = self._sample(instances[i], make_int_box(boxes_xywh_abs[i])) |
|
annotation_i[DensePoseDataRelative.S_KEY] = self._resample_mask( |
|
instances[i].pred_densepose |
|
) |
|
dp_datas.append(DensePoseDataRelative(annotation_i)) |
|
|
|
dp_list = DensePoseList(dp_datas, boxes_xyxy_abs, instances.image_size) |
|
return dp_list |
|
|
|
def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]: |
|
""" |
|
Sample DensPoseDataRelative from estimation results |
|
""" |
|
labels, dp_result = self._produce_labels_and_results(instance) |
|
annotation = { |
|
DensePoseDataRelative.X_KEY: [], |
|
DensePoseDataRelative.Y_KEY: [], |
|
DensePoseDataRelative.U_KEY: [], |
|
DensePoseDataRelative.V_KEY: [], |
|
DensePoseDataRelative.I_KEY: [], |
|
} |
|
n, h, w = dp_result.shape |
|
for part_id in range(1, DensePoseDataRelative.N_PART_LABELS + 1): |
|
|
|
|
|
|
|
|
|
indices = torch.nonzero(labels.expand(n, h, w) == part_id, as_tuple=True) |
|
|
|
|
|
|
|
values = dp_result[indices].view(n, -1) |
|
k = values.shape[1] |
|
count = min(self.count_per_class, k) |
|
if count <= 0: |
|
continue |
|
index_sample = self._produce_index_sample(values, count) |
|
sampled_values = values[:, index_sample] |
|
sampled_y = indices[1][index_sample] + 0.5 |
|
sampled_x = indices[2][index_sample] + 0.5 |
|
|
|
x = (sampled_x / w * 256.0).cpu().tolist() |
|
y = (sampled_y / h * 256.0).cpu().tolist() |
|
u = sampled_values[0].clamp(0, 1).cpu().tolist() |
|
v = sampled_values[1].clamp(0, 1).cpu().tolist() |
|
fine_segm_labels = [part_id] * count |
|
|
|
annotation[DensePoseDataRelative.X_KEY].extend(x) |
|
annotation[DensePoseDataRelative.Y_KEY].extend(y) |
|
annotation[DensePoseDataRelative.U_KEY].extend(u) |
|
annotation[DensePoseDataRelative.V_KEY].extend(v) |
|
annotation[DensePoseDataRelative.I_KEY].extend(fine_segm_labels) |
|
return annotation |
|
|
|
def _produce_index_sample(self, values: torch.Tensor, count: int): |
|
""" |
|
Abstract method to produce a sample of indices to select data |
|
To be implemented in descendants |
|
|
|
Args: |
|
values (torch.Tensor): an array of size [n, k] that contains |
|
estimated values (U, V, confidences); |
|
n: number of channels (U, V, confidences) |
|
k: number of points labeled with part_id |
|
count (int): number of samples to produce, should be positive and <= k |
|
|
|
Return: |
|
list(int): indices of values (along axis 1) selected as a sample |
|
""" |
|
raise NotImplementedError |
|
|
|
def _produce_labels_and_results(self, instance: Instances) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Method to get labels and DensePose results from an instance |
|
|
|
Args: |
|
instance (Instances): an instance of `DensePoseChartPredictorOutput` |
|
|
|
Return: |
|
labels (torch.Tensor): shape [H, W], DensePose segmentation labels |
|
dp_result (torch.Tensor): shape [2, H, W], stacked DensePose results u and v |
|
""" |
|
converter = ToChartResultConverter |
|
chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes) |
|
labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu() |
|
return labels, dp_result |
|
|
|
def _resample_mask(self, output: Any) -> torch.Tensor: |
|
""" |
|
Convert DensePose predictor output to segmentation annotation - tensors of size |
|
(256, 256) and type `int64`. |
|
|
|
Args: |
|
output: DensePose predictor output with the following attributes: |
|
- coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse |
|
segmentation scores |
|
- fine_segm: tensor of size [N, C, H, W] with unnormalized fine |
|
segmentation scores |
|
Return: |
|
Tensor of size (S, S) and type `int64` with coarse segmentation annotations, |
|
where S = DensePoseDataRelative.MASK_SIZE |
|
""" |
|
sz = DensePoseDataRelative.MASK_SIZE |
|
S = ( |
|
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False) |
|
.argmax(dim=1) |
|
.long() |
|
) |
|
I = ( |
|
( |
|
F.interpolate( |
|
output.fine_segm, |
|
(sz, sz), |
|
mode="bilinear", |
|
align_corners=False, |
|
).argmax(dim=1) |
|
* (S > 0).long() |
|
) |
|
.squeeze() |
|
.cpu() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FINE_TO_COARSE_SEGMENTATION = { |
|
1: 1, |
|
2: 1, |
|
3: 2, |
|
4: 3, |
|
5: 4, |
|
6: 5, |
|
7: 6, |
|
8: 7, |
|
9: 6, |
|
10: 7, |
|
11: 8, |
|
12: 9, |
|
13: 8, |
|
14: 9, |
|
15: 10, |
|
16: 11, |
|
17: 10, |
|
18: 11, |
|
19: 12, |
|
20: 13, |
|
21: 12, |
|
22: 13, |
|
23: 14, |
|
24: 14, |
|
} |
|
mask = torch.zeros((sz, sz), dtype=torch.int64, device=torch.device("cpu")) |
|
for i in range(DensePoseDataRelative.N_PART_LABELS): |
|
mask[I == i + 1] = FINE_TO_COARSE_SEGMENTATION[i + 1] |
|
return mask |
|
|