|
|
|
|
|
|
|
import copy |
|
import numpy as np |
|
import torch |
|
from fvcore.transforms import HFlipTransform, TransformList |
|
from torch.nn import functional as F |
|
|
|
from detectron2.data.transforms import RandomRotation, RotationTransform, apply_transform_gens |
|
from detectron2.modeling.postprocessing import detector_postprocess |
|
from detectron2.modeling.test_time_augmentation import DatasetMapperTTA, GeneralizedRCNNWithTTA |
|
|
|
from ..converters import HFlipConverter |
|
|
|
|
|
class DensePoseDatasetMapperTTA(DatasetMapperTTA): |
|
def __init__(self, cfg): |
|
super().__init__(cfg=cfg) |
|
self.angles = cfg.TEST.AUG.ROTATION_ANGLES |
|
|
|
def __call__(self, dataset_dict): |
|
ret = super().__call__(dataset_dict=dataset_dict) |
|
numpy_image = dataset_dict["image"].permute(1, 2, 0).numpy() |
|
for angle in self.angles: |
|
rotate = RandomRotation(angle=angle, expand=True) |
|
new_numpy_image, tfms = apply_transform_gens([rotate], np.copy(numpy_image)) |
|
torch_image = torch.from_numpy(np.ascontiguousarray(new_numpy_image.transpose(2, 0, 1))) |
|
dic = copy.deepcopy(dataset_dict) |
|
|
|
|
|
dic["transforms"] = TransformList( |
|
[ret[-1]["transforms"].transforms[0]] + tfms.transforms |
|
) |
|
dic["image"] = torch_image |
|
ret.append(dic) |
|
return ret |
|
|
|
|
|
class DensePoseGeneralizedRCNNWithTTA(GeneralizedRCNNWithTTA): |
|
def __init__(self, cfg, model, transform_data, tta_mapper=None, batch_size=1): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
model (GeneralizedRCNN): a GeneralizedRCNN to apply TTA on. |
|
transform_data (DensePoseTransformData): contains symmetry label |
|
transforms used for horizontal flip |
|
tta_mapper (callable): takes a dataset dict and returns a list of |
|
augmented versions of the dataset dict. Defaults to |
|
`DatasetMapperTTA(cfg)`. |
|
batch_size (int): batch the augmented images into this batch size for inference. |
|
""" |
|
self._transform_data = transform_data.to(model.device) |
|
super().__init__(cfg=cfg, model=model, tta_mapper=tta_mapper, batch_size=batch_size) |
|
|
|
|
|
def _inference_one_image(self, input): |
|
""" |
|
Args: |
|
input (dict): one dataset dict with "image" field being a CHW tensor |
|
|
|
Returns: |
|
dict: one output dict |
|
""" |
|
orig_shape = (input["height"], input["width"]) |
|
|
|
input["image"] = input["image"].to(torch.uint8) |
|
augmented_inputs, tfms = self._get_augmented_inputs(input) |
|
|
|
with self._turn_off_roi_heads(["mask_on", "keypoint_on", "densepose_on"]): |
|
|
|
all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms) |
|
merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape) |
|
|
|
if self.cfg.MODEL.MASK_ON or self.cfg.MODEL.DENSEPOSE_ON: |
|
|
|
augmented_instances = self._rescale_detected_boxes( |
|
augmented_inputs, merged_instances, tfms |
|
) |
|
|
|
outputs = self._batch_inference(augmented_inputs, augmented_instances) |
|
|
|
del augmented_inputs, augmented_instances |
|
|
|
if self.cfg.MODEL.MASK_ON: |
|
merged_instances.pred_masks = self._reduce_pred_masks(outputs, tfms) |
|
if self.cfg.MODEL.DENSEPOSE_ON: |
|
merged_instances.pred_densepose = self._reduce_pred_densepose(outputs, tfms) |
|
|
|
merged_instances = detector_postprocess(merged_instances, *orig_shape) |
|
return {"instances": merged_instances} |
|
else: |
|
return {"instances": merged_instances} |
|
|
|
def _get_augmented_boxes(self, augmented_inputs, tfms): |
|
|
|
|
|
|
|
outputs = self._batch_inference(augmented_inputs) |
|
|
|
all_boxes = [] |
|
all_scores = [] |
|
all_classes = [] |
|
for output, tfm in zip(outputs, tfms): |
|
|
|
if not any(isinstance(t, RotationTransform) for t in tfm.transforms): |
|
|
|
pred_boxes = output.pred_boxes.tensor |
|
original_pred_boxes = tfm.inverse().apply_box(pred_boxes.cpu().numpy()) |
|
all_boxes.append(torch.from_numpy(original_pred_boxes).to(pred_boxes.device)) |
|
all_scores.extend(output.scores) |
|
all_classes.extend(output.pred_classes) |
|
all_boxes = torch.cat(all_boxes, dim=0) |
|
return all_boxes, all_scores, all_classes |
|
|
|
def _reduce_pred_densepose(self, outputs, tfms): |
|
|
|
|
|
|
|
for idx, (output, tfm) in enumerate(zip(outputs, tfms)): |
|
for t in tfm.transforms: |
|
for attr in ["coarse_segm", "fine_segm", "u", "v"]: |
|
setattr( |
|
output.pred_densepose, |
|
attr, |
|
_inverse_rotation( |
|
getattr(output.pred_densepose, attr), output.pred_boxes.tensor, t |
|
), |
|
) |
|
if any(isinstance(t, HFlipTransform) for t in tfm.transforms): |
|
output.pred_densepose = HFlipConverter.convert( |
|
output.pred_densepose, self._transform_data |
|
) |
|
self._incremental_avg_dp(outputs[0].pred_densepose, output.pred_densepose, idx) |
|
return outputs[0].pred_densepose |
|
|
|
|
|
def _incremental_avg_dp(self, avg, new_el, idx): |
|
for attr in ["coarse_segm", "fine_segm", "u", "v"]: |
|
setattr(avg, attr, (getattr(avg, attr) * idx + getattr(new_el, attr)) / (idx + 1)) |
|
if idx: |
|
|
|
setattr(new_el, attr, None) |
|
return avg |
|
|
|
|
|
def _inverse_rotation(densepose_attrs, boxes, transform): |
|
|
|
|
|
if len(boxes) == 0 or not isinstance(transform, RotationTransform): |
|
return densepose_attrs |
|
boxes = boxes.int().cpu().numpy() |
|
wh_boxes = boxes[:, 2:] - boxes[:, :2] |
|
inv_boxes = rotate_box_inverse(transform, boxes).astype(int) |
|
wh_diff = (inv_boxes[:, 2:] - inv_boxes[:, :2] - wh_boxes) // 2 |
|
rotation_matrix = torch.tensor([transform.rm_image]).to(device=densepose_attrs.device).float() |
|
rotation_matrix[:, :, -1] = 0 |
|
|
|
|
|
|
|
l_bds = np.maximum(0, -wh_diff) |
|
for i in range(len(densepose_attrs)): |
|
if min(wh_boxes[i]) <= 0: |
|
continue |
|
densepose_attr = densepose_attrs[[i]].clone() |
|
|
|
densepose_attr = F.interpolate(densepose_attr, wh_boxes[i].tolist()[::-1], mode="bilinear") |
|
|
|
densepose_attr = F.pad(densepose_attr, tuple(np.repeat(np.maximum(0, wh_diff[i]), 2))) |
|
|
|
grid = F.affine_grid(rotation_matrix, size=densepose_attr.shape) |
|
densepose_attr = F.grid_sample(densepose_attr, grid) |
|
|
|
r_bds = densepose_attr.shape[2:][::-1] - l_bds[i] |
|
densepose_attr = densepose_attr[:, :, l_bds[i][1] : r_bds[1], l_bds[i][0] : r_bds[0]] |
|
if min(densepose_attr.shape) > 0: |
|
|
|
densepose_attr = F.interpolate( |
|
densepose_attr, densepose_attrs.shape[-2:], mode="bilinear" |
|
) |
|
|
|
densepose_attr[:, 0] += 1e-10 |
|
densepose_attrs[i] = densepose_attr |
|
return densepose_attrs |
|
|
|
|
|
def rotate_box_inverse(rot_tfm, rotated_box): |
|
""" |
|
rotated_box is a N * 4 array of [x0, y0, x1, y1] boxes |
|
When a bbox is rotated, it gets bigger, because we need to surround the tilted bbox |
|
So when a bbox is rotated then inverse-rotated, it is much bigger than the original |
|
This function aims to invert the rotation on the box, but also resize it to its original size |
|
""" |
|
|
|
invrot_box = rot_tfm.inverse().apply_box(rotated_box) |
|
h, w = rotated_box[:, 3] - rotated_box[:, 1], rotated_box[:, 2] - rotated_box[:, 0] |
|
ih, iw = invrot_box[:, 3] - invrot_box[:, 1], invrot_box[:, 2] - invrot_box[:, 0] |
|
assert 2 * rot_tfm.abs_sin**2 != 1, "45 degrees angle can't be inverted" |
|
|
|
|
|
orig_h = (h * rot_tfm.abs_cos - w * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2) |
|
orig_w = (w * rot_tfm.abs_cos - h * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2) |
|
|
|
invrot_box[:, 0] += (iw - orig_w) / 2 |
|
invrot_box[:, 1] += (ih - orig_h) / 2 |
|
invrot_box[:, 2] -= (iw - orig_w) / 2 |
|
invrot_box[:, 3] -= (ih - orig_h) / 2 |
|
|
|
return invrot_box |
|
|