abubakar123456's picture
Upload 750 files
71d94dd verified
raw
history blame
22.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import Dict
import torch
import torch.nn.functional as F
from detectron2.layers import ShapeSpec, cat
from detectron2.layers.roi_align_rotated import ROIAlignRotated
from detectron2.modeling import poolers
from detectron2.modeling.proposal_generator import rpn
from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference
from detectron2.structures import Boxes, ImageList, Instances, Keypoints, RotatedBoxes
from .shared import alias, to_device
"""
This file contains caffe2-compatible implementation of several detectron2 components.
"""
class Caffe2Boxes(Boxes):
"""
Representing a list of detectron2.structures.Boxes from minibatch, each box
is represented by a 5d vector (batch index + 4 coordinates), or a 6d vector
(batch index + 5 coordinates) for RotatedBoxes.
"""
def __init__(self, tensor):
assert isinstance(tensor, torch.Tensor)
assert tensor.dim() == 2 and tensor.size(-1) in [4, 5, 6], tensor.size()
# TODO: make tensor immutable when dim is Nx5 for Boxes,
# and Nx6 for RotatedBoxes?
self.tensor = tensor
# TODO clean up this class, maybe just extend Instances
class InstancesList:
"""
Tensor representation of a list of Instances object for a batch of images.
When dealing with a batch of images with Caffe2 ops, a list of bboxes
(instances) are usually represented by single Tensor with size
(sigma(Ni), 5) or (sigma(Ni), 4) plus a batch split Tensor. This class is
for providing common functions to convert between these two representations.
"""
def __init__(self, im_info, indices, extra_fields=None):
# [N, 3] -> (H, W, Scale)
self.im_info = im_info
# [N,] -> indice of batch to which the instance belongs
self.indices = indices
# [N, ...]
self.batch_extra_fields = extra_fields or {}
self.image_size = self.im_info
def get_fields(self):
"""like `get_fields` in the Instances object,
but return each field in tensor representations"""
ret = {}
for k, v in self.batch_extra_fields.items():
# if isinstance(v, torch.Tensor):
# tensor_rep = v
# elif isinstance(v, (Boxes, Keypoints)):
# tensor_rep = v.tensor
# else:
# raise ValueError("Can't find tensor representation for: {}".format())
ret[k] = v
return ret
def has(self, name):
return name in self.batch_extra_fields
def set(self, name, value):
# len(tensor) is a bad practice that generates ONNX constants during tracing.
# Although not a problem for the `assert` statement below, torch ONNX exporter
# still raises a misleading warning as it does not this call comes from `assert`
if isinstance(value, Boxes):
data_len = value.tensor.shape[0]
elif isinstance(value, torch.Tensor):
data_len = value.shape[0]
else:
data_len = len(value)
if len(self.batch_extra_fields):
assert (
len(self) == data_len
), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self))
self.batch_extra_fields[name] = value
def __getattr__(self, name):
if name not in self.batch_extra_fields:
raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
return self.batch_extra_fields[name]
def __len__(self):
return len(self.indices)
def flatten(self):
ret = []
for _, v in self.batch_extra_fields.items():
if isinstance(v, (Boxes, Keypoints)):
ret.append(v.tensor)
else:
ret.append(v)
return ret
@staticmethod
def to_d2_instances_list(instances_list):
"""
Convert InstancesList to List[Instances]. The input `instances_list` can
also be a List[Instances], in this case this method is a non-op.
"""
if not isinstance(instances_list, InstancesList):
assert all(isinstance(x, Instances) for x in instances_list)
return instances_list
ret = []
for i, info in enumerate(instances_list.im_info):
instances = Instances(torch.Size([int(info[0].item()), int(info[1].item())]))
ids = instances_list.indices == i
for k, v in instances_list.batch_extra_fields.items():
if isinstance(v, torch.Tensor):
instances.set(k, v[ids])
continue
elif isinstance(v, Boxes):
instances.set(k, v[ids, -4:])
continue
target_type, tensor_source = v
assert isinstance(tensor_source, torch.Tensor)
assert tensor_source.shape[0] == instances_list.indices.shape[0]
tensor_source = tensor_source[ids]
if issubclass(target_type, Boxes):
instances.set(k, Boxes(tensor_source[:, -4:]))
elif issubclass(target_type, Keypoints):
instances.set(k, Keypoints(tensor_source))
elif issubclass(target_type, torch.Tensor):
instances.set(k, tensor_source)
else:
raise ValueError("Can't handle targe type: {}".format(target_type))
ret.append(instances)
return ret
class Caffe2Compatible:
"""
A model can inherit this class to indicate that it can be traced and deployed with caffe2.
"""
def _get_tensor_mode(self):
return self._tensor_mode
def _set_tensor_mode(self, v):
self._tensor_mode = v
tensor_mode = property(_get_tensor_mode, _set_tensor_mode)
"""
If true, the model expects C2-style tensor only inputs/outputs format.
"""
class Caffe2RPN(Caffe2Compatible, rpn.RPN):
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
ret = super(Caffe2Compatible, cls).from_config(cfg, input_shape)
assert tuple(cfg.MODEL.RPN.BBOX_REG_WEIGHTS) == (1.0, 1.0, 1.0, 1.0) or tuple(
cfg.MODEL.RPN.BBOX_REG_WEIGHTS
) == (1.0, 1.0, 1.0, 1.0, 1.0)
return ret
def _generate_proposals(
self, images, objectness_logits_pred, anchor_deltas_pred, gt_instances=None
):
assert isinstance(images, ImageList)
if self.tensor_mode:
im_info = images.image_sizes
else:
im_info = torch.tensor([[im_sz[0], im_sz[1], 1.0] for im_sz in images.image_sizes]).to(
images.tensor.device
)
assert isinstance(im_info, torch.Tensor)
rpn_rois_list = []
rpn_roi_probs_list = []
for scores, bbox_deltas, cell_anchors_tensor, feat_stride in zip(
objectness_logits_pred,
anchor_deltas_pred,
[b for (n, b) in self.anchor_generator.cell_anchors.named_buffers()],
self.anchor_generator.strides,
):
scores = scores.detach()
bbox_deltas = bbox_deltas.detach()
rpn_rois, rpn_roi_probs = torch.ops._caffe2.GenerateProposals(
scores,
bbox_deltas,
im_info,
cell_anchors_tensor,
spatial_scale=1.0 / feat_stride,
pre_nms_topN=self.pre_nms_topk[self.training],
post_nms_topN=self.post_nms_topk[self.training],
nms_thresh=self.nms_thresh,
min_size=self.min_box_size,
# correct_transform_coords=True, # deprecated argument
angle_bound_on=True, # Default
angle_bound_lo=-180,
angle_bound_hi=180,
clip_angle_thresh=1.0, # Default
legacy_plus_one=False,
)
rpn_rois_list.append(rpn_rois)
rpn_roi_probs_list.append(rpn_roi_probs)
# For FPN in D2, in RPN all proposals from different levels are concated
# together, ranked and picked by top post_nms_topk. Then in ROIPooler
# it calculates level_assignments and calls the RoIAlign from
# the corresponding level.
if len(objectness_logits_pred) == 1:
rpn_rois = rpn_rois_list[0]
rpn_roi_probs = rpn_roi_probs_list[0]
else:
assert len(rpn_rois_list) == len(rpn_roi_probs_list)
rpn_post_nms_topN = self.post_nms_topk[self.training]
device = rpn_rois_list[0].device
input_list = [to_device(x, "cpu") for x in (rpn_rois_list + rpn_roi_probs_list)]
# TODO remove this after confirming rpn_max_level/rpn_min_level
# is not needed in CollectRpnProposals.
feature_strides = list(self.anchor_generator.strides)
rpn_min_level = int(math.log2(feature_strides[0]))
rpn_max_level = int(math.log2(feature_strides[-1]))
assert (rpn_max_level - rpn_min_level + 1) == len(
rpn_rois_list
), "CollectRpnProposals requires continuous levels"
rpn_rois = torch.ops._caffe2.CollectRpnProposals(
input_list,
# NOTE: in current implementation, rpn_max_level and rpn_min_level
# are not needed, only the subtraction of two matters and it
# can be infer from the number of inputs. Keep them now for
# consistency.
rpn_max_level=2 + len(rpn_rois_list) - 1,
rpn_min_level=2,
rpn_post_nms_topN=rpn_post_nms_topN,
)
rpn_rois = to_device(rpn_rois, device)
rpn_roi_probs = []
proposals = self.c2_postprocess(im_info, rpn_rois, rpn_roi_probs, self.tensor_mode)
return proposals, {}
def forward(self, images, features, gt_instances=None):
assert not self.training
features = [features[f] for f in self.in_features]
objectness_logits_pred, anchor_deltas_pred = self.rpn_head(features)
return self._generate_proposals(
images,
objectness_logits_pred,
anchor_deltas_pred,
gt_instances,
)
@staticmethod
def c2_postprocess(im_info, rpn_rois, rpn_roi_probs, tensor_mode):
proposals = InstancesList(
im_info=im_info,
indices=rpn_rois[:, 0],
extra_fields={
"proposal_boxes": Caffe2Boxes(rpn_rois),
"objectness_logits": (torch.Tensor, rpn_roi_probs),
},
)
if not tensor_mode:
proposals = InstancesList.to_d2_instances_list(proposals)
else:
proposals = [proposals]
return proposals
class Caffe2ROIPooler(Caffe2Compatible, poolers.ROIPooler):
@staticmethod
def c2_preprocess(box_lists):
assert all(isinstance(x, Boxes) for x in box_lists)
if all(isinstance(x, Caffe2Boxes) for x in box_lists):
# input is pure-tensor based
assert len(box_lists) == 1
pooler_fmt_boxes = box_lists[0].tensor
else:
pooler_fmt_boxes = poolers.convert_boxes_to_pooler_format(box_lists)
return pooler_fmt_boxes
def forward(self, x, box_lists):
assert not self.training
pooler_fmt_boxes = self.c2_preprocess(box_lists)
num_level_assignments = len(self.level_poolers)
if num_level_assignments == 1:
if isinstance(self.level_poolers[0], ROIAlignRotated):
c2_roi_align = torch.ops._caffe2.RoIAlignRotated
aligned = True
else:
c2_roi_align = torch.ops._caffe2.RoIAlign
aligned = self.level_poolers[0].aligned
x0 = x[0]
if x0.is_quantized:
x0 = x0.dequantize()
out = c2_roi_align(
x0,
pooler_fmt_boxes,
order="NCHW",
spatial_scale=float(self.level_poolers[0].spatial_scale),
pooled_h=int(self.output_size[0]),
pooled_w=int(self.output_size[1]),
sampling_ratio=int(self.level_poolers[0].sampling_ratio),
aligned=aligned,
)
return out
device = pooler_fmt_boxes.device
assert (
self.max_level - self.min_level + 1 == 4
), "Currently DistributeFpnProposals only support 4 levels"
fpn_outputs = torch.ops._caffe2.DistributeFpnProposals(
to_device(pooler_fmt_boxes, "cpu"),
roi_canonical_scale=self.canonical_box_size,
roi_canonical_level=self.canonical_level,
roi_max_level=self.max_level,
roi_min_level=self.min_level,
legacy_plus_one=False,
)
fpn_outputs = [to_device(x, device) for x in fpn_outputs]
rois_fpn_list = fpn_outputs[:-1]
rois_idx_restore_int32 = fpn_outputs[-1]
roi_feat_fpn_list = []
for roi_fpn, x_level, pooler in zip(rois_fpn_list, x, self.level_poolers):
if isinstance(pooler, ROIAlignRotated):
c2_roi_align = torch.ops._caffe2.RoIAlignRotated
aligned = True
else:
c2_roi_align = torch.ops._caffe2.RoIAlign
aligned = bool(pooler.aligned)
if x_level.is_quantized:
x_level = x_level.dequantize()
roi_feat_fpn = c2_roi_align(
x_level,
roi_fpn,
order="NCHW",
spatial_scale=float(pooler.spatial_scale),
pooled_h=int(self.output_size[0]),
pooled_w=int(self.output_size[1]),
sampling_ratio=int(pooler.sampling_ratio),
aligned=aligned,
)
roi_feat_fpn_list.append(roi_feat_fpn)
roi_feat_shuffled = cat(roi_feat_fpn_list, dim=0)
assert roi_feat_shuffled.numel() > 0 and rois_idx_restore_int32.numel() > 0, (
"Caffe2 export requires tracing with a model checkpoint + input that can produce valid"
" detections. But no detections were obtained with the given checkpoint and input!"
)
roi_feat = torch.ops._caffe2.BatchPermutation(roi_feat_shuffled, rois_idx_restore_int32)
return roi_feat
def caffe2_fast_rcnn_outputs_inference(tensor_mode, box_predictor, predictions, proposals):
"""equivalent to FastRCNNOutputLayers.inference"""
num_classes = box_predictor.num_classes
score_thresh = box_predictor.test_score_thresh
nms_thresh = box_predictor.test_nms_thresh
topk_per_image = box_predictor.test_topk_per_image
is_rotated = len(box_predictor.box2box_transform.weights) == 5
if is_rotated:
box_dim = 5
assert box_predictor.box2box_transform.weights[4] == 1, (
"The weights for Rotated BBoxTransform in C2 have only 4 dimensions,"
+ " thus enforcing the angle weight to be 1 for now"
)
box2box_transform_weights = box_predictor.box2box_transform.weights[:4]
else:
box_dim = 4
box2box_transform_weights = box_predictor.box2box_transform.weights
class_logits, box_regression = predictions
if num_classes + 1 == class_logits.shape[1]:
class_prob = F.softmax(class_logits, -1)
else:
assert num_classes == class_logits.shape[1]
class_prob = F.sigmoid(class_logits)
# BoxWithNMSLimit will infer num_classes from the shape of the class_prob
# So append a zero column as placeholder for the background class
class_prob = torch.cat((class_prob, torch.zeros(class_prob.shape[0], 1)), dim=1)
assert box_regression.shape[1] % box_dim == 0
cls_agnostic_bbox_reg = box_regression.shape[1] // box_dim == 1
input_tensor_mode = proposals[0].proposal_boxes.tensor.shape[1] == box_dim + 1
proposal_boxes = proposals[0].proposal_boxes
if isinstance(proposal_boxes, Caffe2Boxes):
rois = Caffe2Boxes.cat([p.proposal_boxes for p in proposals])
elif isinstance(proposal_boxes, RotatedBoxes):
rois = RotatedBoxes.cat([p.proposal_boxes for p in proposals])
elif isinstance(proposal_boxes, Boxes):
rois = Boxes.cat([p.proposal_boxes for p in proposals])
else:
raise NotImplementedError(
'Expected proposals[0].proposal_boxes to be type "Boxes", '
f"instead got {type(proposal_boxes)}"
)
device, dtype = rois.tensor.device, rois.tensor.dtype
if input_tensor_mode:
im_info = proposals[0].image_size
rois = rois.tensor
else:
im_info = torch.tensor([[sz[0], sz[1], 1.0] for sz in [x.image_size for x in proposals]])
batch_ids = cat(
[
torch.full((b, 1), i, dtype=dtype, device=device)
for i, b in enumerate(len(p) for p in proposals)
],
dim=0,
)
rois = torch.cat([batch_ids, rois.tensor], dim=1)
roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform(
to_device(rois, "cpu"),
to_device(box_regression, "cpu"),
to_device(im_info, "cpu"),
weights=box2box_transform_weights,
apply_scale=True,
rotated=is_rotated,
angle_bound_on=True,
angle_bound_lo=-180,
angle_bound_hi=180,
clip_angle_thresh=1.0,
legacy_plus_one=False,
)
roi_pred_bbox = to_device(roi_pred_bbox, device)
roi_batch_splits = to_device(roi_batch_splits, device)
nms_outputs = torch.ops._caffe2.BoxWithNMSLimit(
to_device(class_prob, "cpu"),
to_device(roi_pred_bbox, "cpu"),
to_device(roi_batch_splits, "cpu"),
score_thresh=float(score_thresh),
nms=float(nms_thresh),
detections_per_im=int(topk_per_image),
soft_nms_enabled=False,
soft_nms_method="linear",
soft_nms_sigma=0.5,
soft_nms_min_score_thres=0.001,
rotated=is_rotated,
cls_agnostic_bbox_reg=cls_agnostic_bbox_reg,
input_boxes_include_bg_cls=False,
output_classes_include_bg_cls=False,
legacy_plus_one=False,
)
roi_score_nms = to_device(nms_outputs[0], device)
roi_bbox_nms = to_device(nms_outputs[1], device)
roi_class_nms = to_device(nms_outputs[2], device)
roi_batch_splits_nms = to_device(nms_outputs[3], device)
roi_keeps_nms = to_device(nms_outputs[4], device)
roi_keeps_size_nms = to_device(nms_outputs[5], device)
if not tensor_mode:
roi_class_nms = roi_class_nms.to(torch.int64)
roi_batch_ids = cat(
[
torch.full((b, 1), i, dtype=dtype, device=device)
for i, b in enumerate(int(x.item()) for x in roi_batch_splits_nms)
],
dim=0,
)
roi_class_nms = alias(roi_class_nms, "class_nms")
roi_score_nms = alias(roi_score_nms, "score_nms")
roi_bbox_nms = alias(roi_bbox_nms, "bbox_nms")
roi_batch_splits_nms = alias(roi_batch_splits_nms, "batch_splits_nms")
roi_keeps_nms = alias(roi_keeps_nms, "keeps_nms")
roi_keeps_size_nms = alias(roi_keeps_size_nms, "keeps_size_nms")
results = InstancesList(
im_info=im_info,
indices=roi_batch_ids[:, 0],
extra_fields={
"pred_boxes": Caffe2Boxes(roi_bbox_nms),
"scores": roi_score_nms,
"pred_classes": roi_class_nms,
},
)
if not tensor_mode:
results = InstancesList.to_d2_instances_list(results)
batch_splits = roi_batch_splits_nms.int().tolist()
kept_indices = list(roi_keeps_nms.to(torch.int64).split(batch_splits))
else:
results = [results]
kept_indices = [roi_keeps_nms]
return results, kept_indices
class Caffe2FastRCNNOutputsInference:
def __init__(self, tensor_mode):
self.tensor_mode = tensor_mode # whether the output is caffe2 tensor mode
def __call__(self, box_predictor, predictions, proposals):
return caffe2_fast_rcnn_outputs_inference(
self.tensor_mode, box_predictor, predictions, proposals
)
def caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances):
"""equivalent to mask_head.mask_rcnn_inference"""
if all(isinstance(x, InstancesList) for x in pred_instances):
assert len(pred_instances) == 1
mask_probs_pred = pred_mask_logits.sigmoid()
mask_probs_pred = alias(mask_probs_pred, "mask_fcn_probs")
pred_instances[0].set("pred_masks", mask_probs_pred)
else:
mask_rcnn_inference(pred_mask_logits, pred_instances)
class Caffe2MaskRCNNInference:
def __call__(self, pred_mask_logits, pred_instances):
return caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances)
def caffe2_keypoint_rcnn_inference(use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances):
# just return the keypoint heatmap for now,
# there will be option to call HeatmapMaxKeypointOp
output = alias(pred_keypoint_logits, "kps_score")
if all(isinstance(x, InstancesList) for x in pred_instances):
assert len(pred_instances) == 1
if use_heatmap_max_keypoint:
device = output.device
output = torch.ops._caffe2.HeatmapMaxKeypoint(
to_device(output, "cpu"),
pred_instances[0].pred_boxes.tensor,
should_output_softmax=True, # worth make it configerable?
)
output = to_device(output, device)
output = alias(output, "keypoints_out")
pred_instances[0].set("pred_keypoints", output)
return pred_keypoint_logits
class Caffe2KeypointRCNNInference:
def __init__(self, use_heatmap_max_keypoint):
self.use_heatmap_max_keypoint = use_heatmap_max_keypoint
def __call__(self, pred_keypoint_logits, pred_instances):
return caffe2_keypoint_rcnn_inference(
self.use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances
)