abubakar123456's picture
Upload 750 files
71d94dd verified
raw
history blame
11.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import collections
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple
import torch
from torch import nn
from detectron2.structures import Boxes, Instances, ROIMasks
from detectron2.utils.registry import _convert_target_to_string, locate
from .torchscript_patch import patch_builtin_len
@dataclass
class Schema:
"""
A Schema defines how to flatten a possibly hierarchical object into tuple of
primitive objects, so it can be used as inputs/outputs of PyTorch's tracing.
PyTorch does not support tracing a function that produces rich output
structures (e.g. dict, Instances, Boxes). To trace such a function, we
flatten the rich object into tuple of tensors, and return this tuple of tensors
instead. Meanwhile, we also need to know how to "rebuild" the original object
from the flattened results, so we can evaluate the flattened results.
A Schema defines how to flatten an object, and while flattening it, it records
necessary schemas so that the object can be rebuilt using the flattened outputs.
The flattened object and the schema object is returned by ``.flatten`` classmethod.
Then the original object can be rebuilt with the ``__call__`` method of schema.
A Schema is a dataclass that can be serialized easily.
"""
# inspired by FetchMapper in tensorflow/python/client/session.py
@classmethod
def flatten(cls, obj):
raise NotImplementedError
def __call__(self, values):
raise NotImplementedError
@staticmethod
def _concat(values):
ret = ()
sizes = []
for v in values:
assert isinstance(v, tuple), "Flattened results must be a tuple"
ret = ret + v
sizes.append(len(v))
return ret, sizes
@staticmethod
def _split(values, sizes):
if len(sizes):
expected_len = sum(sizes)
assert (
len(values) == expected_len
), f"Values has length {len(values)} but expect length {expected_len}."
ret = []
for k in range(len(sizes)):
begin, end = sum(sizes[:k]), sum(sizes[: k + 1])
ret.append(values[begin:end])
return ret
@dataclass
class ListSchema(Schema):
schemas: List[Schema] # the schemas that define how to flatten each element in the list
sizes: List[int] # the flattened length of each element
def __call__(self, values):
values = self._split(values, self.sizes)
if len(values) != len(self.schemas):
raise ValueError(
f"Values has length {len(values)} but schemas " f"has length {len(self.schemas)}!"
)
values = [m(v) for m, v in zip(self.schemas, values)]
return list(values)
@classmethod
def flatten(cls, obj):
res = [flatten_to_tuple(k) for k in obj]
values, sizes = cls._concat([k[0] for k in res])
return values, cls([k[1] for k in res], sizes)
@dataclass
class TupleSchema(ListSchema):
def __call__(self, values):
return tuple(super().__call__(values))
@dataclass
class IdentitySchema(Schema):
def __call__(self, values):
return values[0]
@classmethod
def flatten(cls, obj):
return (obj,), cls()
@dataclass
class DictSchema(ListSchema):
keys: List[str]
def __call__(self, values):
values = super().__call__(values)
return dict(zip(self.keys, values))
@classmethod
def flatten(cls, obj):
for k in obj.keys():
if not isinstance(k, str):
raise KeyError("Only support flattening dictionaries if keys are str.")
keys = sorted(obj.keys())
values = [obj[k] for k in keys]
ret, schema = ListSchema.flatten(values)
return ret, cls(schema.schemas, schema.sizes, keys)
@dataclass
class InstancesSchema(DictSchema):
def __call__(self, values):
image_size, fields = values[-1], values[:-1]
fields = super().__call__(fields)
return Instances(image_size, **fields)
@classmethod
def flatten(cls, obj):
ret, schema = super().flatten(obj.get_fields())
size = obj.image_size
if not isinstance(size, torch.Tensor):
size = torch.tensor(size)
return ret + (size,), schema
@dataclass
class TensorWrapSchema(Schema):
"""
For classes that are simple wrapper of tensors, e.g.
Boxes, RotatedBoxes, BitMasks
"""
class_name: str
def __call__(self, values):
return locate(self.class_name)(values[0])
@classmethod
def flatten(cls, obj):
return (obj.tensor,), cls(_convert_target_to_string(type(obj)))
# if more custom structures needed in the future, can allow
# passing in extra schemas for custom types
def flatten_to_tuple(obj):
"""
Flatten an object so it can be used for PyTorch tracing.
Also returns how to rebuild the original object from the flattened outputs.
Returns:
res (tuple): the flattened results that can be used as tracing outputs
schema: an object with a ``__call__`` method such that ``schema(res) == obj``.
It is a pure dataclass that can be serialized.
"""
schemas = [
((str, bytes), IdentitySchema),
(list, ListSchema),
(tuple, TupleSchema),
(collections.abc.Mapping, DictSchema),
(Instances, InstancesSchema),
((Boxes, ROIMasks), TensorWrapSchema),
]
for klass, schema in schemas:
if isinstance(obj, klass):
F = schema
break
else:
F = IdentitySchema
return F.flatten(obj)
class TracingAdapter(nn.Module):
"""
A model may take rich input/output format (e.g. dict or custom classes),
but `torch.jit.trace` requires tuple of tensors as input/output.
This adapter flattens input/output format of a model so it becomes traceable.
It also records the necessary schema to rebuild model's inputs/outputs from flattened
inputs/outputs.
Example:
::
outputs = model(inputs) # inputs/outputs may be rich structure
adapter = TracingAdapter(model, inputs)
# can now trace the model, with adapter.flattened_inputs, or another
# tuple of tensors with the same length and meaning
traced = torch.jit.trace(adapter, adapter.flattened_inputs)
# traced model can only produce flattened outputs (tuple of tensors)
flattened_outputs = traced(*adapter.flattened_inputs)
# adapter knows the schema to convert it back (new_outputs == outputs)
new_outputs = adapter.outputs_schema(flattened_outputs)
"""
flattened_inputs: Tuple[torch.Tensor] = None
"""
Flattened version of inputs given to this class's constructor.
"""
inputs_schema: Schema = None
"""
Schema of the inputs given to this class's constructor.
"""
outputs_schema: Schema = None
"""
Schema of the output produced by calling the given model with inputs.
"""
def __init__(
self,
model: nn.Module,
inputs,
inference_func: Optional[Callable] = None,
allow_non_tensor: bool = False,
):
"""
Args:
model: an nn.Module
inputs: An input argument or a tuple of input arguments used to call model.
After flattening, it has to only consist of tensors.
inference_func: a callable that takes (model, *inputs), calls the
model with inputs, and return outputs. By default it
is ``lambda model, *inputs: model(*inputs)``. Can be override
if you need to call the model differently.
allow_non_tensor: allow inputs/outputs to contain non-tensor objects.
This option will filter out non-tensor objects to make the
model traceable, but ``inputs_schema``/``outputs_schema`` cannot be
used anymore because inputs/outputs cannot be rebuilt from pure tensors.
This is useful when you're only interested in the single trace of
execution (e.g. for flop count), but not interested in
generalizing the traced graph to new inputs.
"""
super().__init__()
if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)):
model = model.module
self.model = model
if not isinstance(inputs, tuple):
inputs = (inputs,)
self.inputs = inputs
self.allow_non_tensor = allow_non_tensor
if inference_func is None:
inference_func = lambda model, *inputs: model(*inputs) # noqa
self.inference_func = inference_func
self.flattened_inputs, self.inputs_schema = flatten_to_tuple(inputs)
if all(isinstance(x, torch.Tensor) for x in self.flattened_inputs):
return
if self.allow_non_tensor:
self.flattened_inputs = tuple(
[x for x in self.flattened_inputs if isinstance(x, torch.Tensor)]
)
self.inputs_schema = None
else:
for input in self.flattened_inputs:
if not isinstance(input, torch.Tensor):
raise ValueError(
"Inputs for tracing must only contain tensors. "
f"Got a {type(input)} instead."
)
def forward(self, *args: torch.Tensor):
with torch.no_grad(), patch_builtin_len():
if self.inputs_schema is not None:
inputs_orig_format = self.inputs_schema(args)
else:
if len(args) != len(self.flattened_inputs) or any(
x is not y for x, y in zip(args, self.flattened_inputs)
):
raise ValueError(
"TracingAdapter does not contain valid inputs_schema."
" So it cannot generalize to other inputs and must be"
" traced with `.flattened_inputs`."
)
inputs_orig_format = self.inputs
outputs = self.inference_func(self.model, *inputs_orig_format)
flattened_outputs, schema = flatten_to_tuple(outputs)
flattened_output_tensors = tuple(
[x for x in flattened_outputs if isinstance(x, torch.Tensor)]
)
if len(flattened_output_tensors) < len(flattened_outputs):
if self.allow_non_tensor:
flattened_outputs = flattened_output_tensors
self.outputs_schema = None
else:
raise ValueError(
"Model cannot be traced because some model outputs "
"cannot flatten to tensors."
)
else: # schema is valid
if self.outputs_schema is None:
self.outputs_schema = schema
else:
assert self.outputs_schema == schema, (
"Model should always return outputs with the same "
"structure so it can be traced!"
)
return flattened_outputs
def _create_wrapper(self, traced_model):
"""
Return a function that has an input/output interface the same as the
original model, but it calls the given traced model under the hood.
"""
def forward(*args):
flattened_inputs, _ = flatten_to_tuple(args)
flattened_outputs = traced_model(*flattened_inputs)
return self.outputs_schema(flattened_outputs)
return forward