|
from omegaconf import OmegaConf |
|
|
|
import detectron2.data.transforms as T |
|
from detectron2.config import LazyCall as L |
|
from detectron2.data import ( |
|
DatasetMapper, |
|
build_detection_test_loader, |
|
build_detection_train_loader, |
|
get_detection_dataset_dicts, |
|
) |
|
from detectron2.evaluation import COCOEvaluator |
|
|
|
dataloader = OmegaConf.create() |
|
|
|
dataloader.train = L(build_detection_train_loader)( |
|
dataset=L(get_detection_dataset_dicts)(names="coco_2017_train"), |
|
mapper=L(DatasetMapper)( |
|
is_train=True, |
|
augmentations=[ |
|
L(T.ResizeShortestEdge)( |
|
short_edge_length=(640, 672, 704, 736, 768, 800), |
|
sample_style="choice", |
|
max_size=1333, |
|
), |
|
L(T.RandomFlip)(horizontal=True), |
|
], |
|
image_format="BGR", |
|
use_instance_mask=True, |
|
), |
|
total_batch_size=16, |
|
num_workers=4, |
|
) |
|
|
|
dataloader.test = L(build_detection_test_loader)( |
|
dataset=L(get_detection_dataset_dicts)(names="coco_2017_val", filter_empty=False), |
|
mapper=L(DatasetMapper)( |
|
is_train=False, |
|
augmentations=[ |
|
L(T.ResizeShortestEdge)(short_edge_length=800, max_size=1333), |
|
], |
|
image_format="${...train.mapper.image_format}", |
|
), |
|
num_workers=4, |
|
) |
|
|
|
dataloader.evaluator = L(COCOEvaluator)( |
|
dataset_name="${..test.dataset.names}", |
|
) |
|
|