|
|
|
|
|
from detectron2.config import LazyCall as L |
|
from detectron2.layers import ShapeSpec |
|
from detectron2.modeling.meta_arch import RetinaNet |
|
from detectron2.modeling.anchor_generator import DefaultAnchorGenerator |
|
from detectron2.modeling.backbone.fpn import LastLevelP6P7 |
|
from detectron2.modeling.backbone import BasicStem, FPN, ResNet |
|
from detectron2.modeling.box_regression import Box2BoxTransform |
|
from detectron2.modeling.matcher import Matcher |
|
from detectron2.modeling.meta_arch.retinanet import RetinaNetHead |
|
|
|
from ..data.constants import constants |
|
|
|
model = L(RetinaNet)( |
|
backbone=L(FPN)( |
|
bottom_up=L(ResNet)( |
|
stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), |
|
stages=L(ResNet.make_default_stages)( |
|
depth=50, |
|
stride_in_1x1=True, |
|
norm="FrozenBN", |
|
), |
|
out_features=["res3", "res4", "res5"], |
|
), |
|
in_features=["res3", "res4", "res5"], |
|
out_channels=256, |
|
top_block=L(LastLevelP6P7)(in_channels=2048, out_channels="${..out_channels}"), |
|
), |
|
head=L(RetinaNetHead)( |
|
|
|
input_shape=[ShapeSpec(channels=256)] * 5, |
|
num_classes="${..num_classes}", |
|
conv_dims=[256, 256, 256, 256], |
|
prior_prob=0.01, |
|
num_anchors=9, |
|
), |
|
anchor_generator=L(DefaultAnchorGenerator)( |
|
sizes=[[x, x * 2 ** (1.0 / 3), x * 2 ** (2.0 / 3)] for x in [32, 64, 128, 256, 512]], |
|
aspect_ratios=[0.5, 1.0, 2.0], |
|
strides=[8, 16, 32, 64, 128], |
|
offset=0.0, |
|
), |
|
box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), |
|
anchor_matcher=L(Matcher)( |
|
thresholds=[0.4, 0.5], labels=[0, -1, 1], allow_low_quality_matches=True |
|
), |
|
num_classes=80, |
|
head_in_features=["p3", "p4", "p5", "p6", "p7"], |
|
focal_loss_alpha=0.25, |
|
focal_loss_gamma=2.0, |
|
pixel_mean=constants.imagenet_bgr256_mean, |
|
pixel_std=constants.imagenet_bgr256_std, |
|
input_format="BGR", |
|
) |
|
|