|
import argparse |
|
import os |
|
from datetime import datetime |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
device = torch.device('cpu') # Explicitly use CPU if desired |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from huggingface_hub import snapshot_download |
|
from PIL import Image |
|
|
|
from model.cloth_masker import AutoMasker, vis_mask |
|
from model.pipeline import CatVTONPipeline |
|
from utils import init_weight_dtype, resize_and_crop, resize_and_padding |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--base_model_path", |
|
type=str, |
|
default="Abhilashvj/stable-diffusion-inpainting-copy", #"runwayml/stable-diffusion-inpainting", |
|
help=( |
|
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." |
|
), |
|
) |
|
parser.add_argument( |
|
"--resume_path", |
|
type=str, |
|
default="zhengchong/CatVTON", |
|
help=( |
|
"The Path to the checkpoint of trained tryon model." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="resource/demo/output", |
|
help="The output directory where the model predictions will be written.", |
|
) |
|
|
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=768, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--repaint", |
|
action="store_true", |
|
help="Whether to repaint the result image with the original background." |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
default=True, |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="bf16", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new("RGB", size=(cols * w, rows * h)) |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
return grid |
|
|
|
|
|
args = parse_args() |
|
repo_path = snapshot_download(repo_id=args.resume_path) |
|
# Pipeline |
|
pipeline = CatVTONPipeline( |
|
base_ckpt=args.base_model_path, |
|
attn_ckpt=repo_path, |
|
attn_ckpt_version="mix", |
|
weight_dtype=init_weight_dtype(args.mixed_precision), |
|
use_tf32=args.allow_tf32, |
|
# device='cuda' |
|
device='cpu' |
|
) |
|
# AutoMasker |
|
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) |
|
automasker = AutoMasker( |
|
densepose_ckpt=os.path.join(repo_path, "DensePose"), |
|
schp_ckpt=os.path.join(repo_path, "SCHP"), |
|
# device='cuda', |
|
device='cpu' |
|
) |
|
|
|
def submit_function( |
|
person_image, |
|
cloth_image, |
|
cloth_type, |
|
num_inference_steps, |
|
guidance_scale, |
|
seed, |
|
show_type |
|
): |
|
person_image, mask = person_image["background"], person_image["layers"][0] |
|
mask = Image.open(mask).convert("L") |
|
if len(np.unique(np.array(mask))) == 1: |
|
mask = None |
|
else: |
|
mask = np.array(mask) |
|
mask[mask > 0] = 255 |
|
mask = Image.fromarray(mask) |
|
|
|
tmp_folder = args.output_dir |
|
date_str = datetime.now().strftime("%Y%m%d%H%M%S") |
|
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png") |
|
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])): |
|
os.makedirs(os.path.join(tmp_folder, date_str[:8])) |
|
|
|
generator = None |
|
if seed != -1: |
|
# generator = torch.Generator(device='cuda').manual_seed(seed) |
|
generator = torch.Generator(device='cpu').manual_seed(seed) |
|
|
|
person_image = Image.open(person_image).convert("RGB") |
|
cloth_image = Image.open(cloth_image).convert("RGB") |
|
person_image = resize_and_crop(person_image, (args.width, args.height)) |
|
cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) |
|
|
|
# Process mask |
|
if mask is not None: |
|
mask = resize_and_crop(mask, (args.width, args.height)) |
|
else: |
|
mask = automasker( |
|
person_image, |
|
cloth_type |
|
)['mask'] |
|
mask = mask_processor.blur(mask, blur_factor=9) |
|
|
|
# Inference |
|
# try: |
|
result_image = pipeline( |
|
image=person_image, |
|
condition_image=cloth_image, |
|
mask=mask, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator |
|
)[0] |
|
# except Exception as e: |
|
# raise gr.Error( |
|
# "An error occurred. Please try again later: {}".format(e) |
|
# ) |
|
|
|
# Post-process |
|
masked_person = vis_mask(person_image, mask) |
|
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4) |
|
save_result_image.save(result_save_path) |
|
if show_type == "result only": |
|
return result_image |
|
else: |
|
width, height = person_image.size |
|
if show_type == "input & result": |
|
condition_width = width // 2 |
|
conditions = image_grid([person_image, cloth_image], 2, 1) |
|
else: |
|
condition_width = width // 3 |
|
conditions = image_grid([person_image, masked_person , cloth_image], 3, 1) |
|
conditions = conditions.resize((condition_width, height), Image.NEAREST) |
|
new_result_image = Image.new("RGB", (width + condition_width + 5, height)) |
|
new_result_image.paste(conditions, (0, 0)) |
|
new_result_image.paste(result_image, (condition_width + 5, 0)) |
|
return new_result_image |
|
|
|
|
|
def person_example_fn(image_path): |
|
return image_path |
|
|
|
HEADER = """ |
|
<h1 style="text-align: center;"> |
|
Fashioble |
|
</h1> |
|
|
|
""" |
|
|
|
def app_gradio(): |
|
with gr.Blocks(title="CatVTON") as demo: |
|
gr.Markdown(HEADER) |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=350): |
|
with gr.Row(): |
|
image_path = gr.Image( |
|
type="filepath", |
|
interactive=True, |
|
visible=False, |
|
) |
|
person_image = gr.ImageEditor( |
|
interactive=True, label="Person Image", type="filepath" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=230): |
|
cloth_image = gr.Image( |
|
interactive=True, label="Condition Image", type="filepath" |
|
) |
|
with gr.Column(scale=1, min_width=120): |
|
gr.Markdown( |
|
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>' |
|
) |
|
cloth_type = gr.Radio( |
|
label="Try-On Cloth Type", |
|
choices=["upper", "lower", "overall"], |
|
value="upper", |
|
) |
|
|
|
|
|
submit = gr.Button("Submit") |
|
gr.Markdown( |
|
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>' |
|
) |
|
|
|
gr.Markdown( |
|
'<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>' |
|
) |
|
with gr.Accordion("Advanced Options", open=False): |
|
num_inference_steps = gr.Slider( |
|
label="Inference Step", minimum=10, maximum=100, step=5, value=50 |
|
) |
|
# Guidence Scale |
|
guidance_scale = gr.Slider( |
|
label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5 |
|
) |
|
# Random Seed |
|
seed = gr.Slider( |
|
label="Seed", minimum=-1, maximum=10000, step=1, value=42 |
|
) |
|
show_type = gr.Radio( |
|
label="Show Type", |
|
choices=["result only", "input & result", "input & mask & result"], |
|
value="input & mask & result", |
|
) |
|
|
|
with gr.Column(scale=2, min_width=500): |
|
result_image = gr.Image(interactive=False, label="Result") |
|
with gr.Row(): |
|
# Photo Examples |
|
root_path = "resource/demo/example" |
|
with gr.Column(): |
|
men_exm = gr.Examples( |
|
examples=[ |
|
os.path.join(root_path, "person", "men", _) |
|
for _ in os.listdir(os.path.join(root_path, "person", "men")) |
|
], |
|
examples_per_page=4, |
|
inputs=image_path, |
|
label="Person Examples ①", |
|
) |
|
women_exm = gr.Examples( |
|
examples=[ |
|
os.path.join(root_path, "person", "women", _) |
|
for _ in os.listdir(os.path.join(root_path, "person", "women")) |
|
], |
|
examples_per_page=4, |
|
inputs=image_path, |
|
label="Person Examples ②", |
|
) |
|
gr.Markdown( |
|
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>' |
|
) |
|
with gr.Column(): |
|
condition_upper_exm = gr.Examples( |
|
examples=[ |
|
os.path.join(root_path, "condition", "upper", _) |
|
for _ in os.listdir(os.path.join(root_path, "condition", "upper")) |
|
], |
|
examples_per_page=4, |
|
inputs=cloth_image, |
|
label="Condition Upper Examples", |
|
) |
|
condition_overall_exm = gr.Examples( |
|
examples=[ |
|
os.path.join(root_path, "condition", "overall", _) |
|
for _ in os.listdir(os.path.join(root_path, "condition", "overall")) |
|
], |
|
examples_per_page=4, |
|
inputs=cloth_image, |
|
label="Condition Overall Examples", |
|
) |
|
condition_person_exm = gr.Examples( |
|
examples=[ |
|
os.path.join(root_path, "condition", "person", _) |
|
for _ in os.listdir(os.path.join(root_path, "condition", "person")) |
|
], |
|
examples_per_page=4, |
|
inputs=cloth_image, |
|
label="Condition Reference Person Examples", |
|
) |
|
gr.Markdown( |
|
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>' |
|
) |
|
|
|
image_path.change( |
|
person_example_fn, inputs=image_path, outputs=person_image |
|
) |
|
|
|
submit.click( |
|
submit_function, |
|
[ |
|
person_image, |
|
cloth_image, |
|
cloth_type, |
|
num_inference_steps, |
|
guidance_scale, |
|
seed, |
|
show_type, |
|
], |
|
result_image, |
|
) |
|
demo.queue().launch(share=True, show_error=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
app_gradio() |
|
|