Fashable-Tryon / detectron2 /layers /csrc /deformable /deform_conv_cuda_kernel.cu
abubakar123456's picture
Upload 750 files
71d94dd verified
// Copyright (c) Facebook, Inc. and its affiliates.
// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
// Original license: Apache 2.0
// clang-format off
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
/*!
******************* BEGIN Caffe Copyright Notice and Disclaimer *****************
*
* COPYRIGHT
*
* All contributions by the University of California:
* Copyright (c) 2014-2017 The Regents of the University of California (Regents)
* All rights reserved.
*
* All other contributions:
* Copyright (c) 2014-2017, the respective contributors
* All rights reserved.
*
* Caffe uses a shared copyright model: each contributor holds copyright over
* their contributions to Caffe. The project versioning records all such
* contribution and copyright details. If a contributor wants to further mark
* their specific copyright on a particular contribution, they should indicate
* their copyright solely in the commit message of the change when it is
* committed.
*
* LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
*AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
*FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
*DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
*OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* CONTRIBUTION AGREEMENT
*
* By contributing to the BVLC/caffe repository through pull-request, comment,
* or otherwise, the contributor releases their content to the
* license and copyright terms herein.
*
***************** END Caffe Copyright Notice and Disclaimer *********************
*
* Copyright (c) 2018 Microsoft
* Licensed under The MIT License [see LICENSE for details]
* \file modulated_deformable_im2col.cuh
* \brief Function definitions of converting an image to
* column matrix based on kernel, padding, dilation, and offset.
* These functions are mainly used in deformable convolution operators.
* \ref: https://arxiv.org/abs/1703.06211
* \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
*/
#include <ATen/ATen.h>
#include <c10/cuda/CUDAGuard.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <THC/THCAtomics.cuh>
using namespace at;
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
namespace {
const int CUDA_NUM_THREADS = 1024;
const int kMaxGridNum = 65535;
inline int GET_BLOCKS(const int N) {
return std::min(kMaxGridNum, (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS);
}
}
template <typename scalar_t>
__device__ scalar_t deformable_im2col_bilinear(
const scalar_t* bottom_data,
const int data_width,
const int height,
const int width,
scalar_t h,
scalar_t w) {
int h_low = floor(h);
int w_low = floor(w);
int h_high = h_low + 1;
int w_high = w_low + 1;
scalar_t lh = h - h_low;
scalar_t lw = w - w_low;
scalar_t hh = 1 - lh, hw = 1 - lw;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
v1 = bottom_data[h_low * data_width + w_low];
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
v2 = bottom_data[h_low * data_width + w_high];
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
v3 = bottom_data[h_high * data_width + w_low];
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
v4 = bottom_data[h_high * data_width + w_high];
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename scalar_t>
__device__ scalar_t get_gradient_weight(
scalar_t argmax_h,
scalar_t argmax_w,
const int h,
const int w,
const int height,
const int width) {
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
argmax_w >= width) {
// empty
return 0;
}
int argmax_h_low = floor(argmax_h);
int argmax_w_low = floor(argmax_w);
int argmax_h_high = argmax_h_low + 1;
int argmax_w_high = argmax_w_low + 1;
scalar_t weight = 0;
if (h == argmax_h_low && w == argmax_w_low)
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
if (h == argmax_h_low && w == argmax_w_high)
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
if (h == argmax_h_high && w == argmax_w_low)
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
if (h == argmax_h_high && w == argmax_w_high)
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
return weight;
}
template <typename scalar_t>
__device__ scalar_t get_coordinate_weight(
scalar_t argmax_h,
scalar_t argmax_w,
const int height,
const int width,
const scalar_t* im_data,
const int data_width,
const int bp_dir) {
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
argmax_w >= width) {
// empty
return 0;
}
int argmax_h_low = floor(argmax_h);
int argmax_w_low = floor(argmax_w);
int argmax_h_high = argmax_h_low + 1;
int argmax_w_high = argmax_w_low + 1;
scalar_t weight = 0;
if (bp_dir == 0) {
if (argmax_h_low >= 0 && argmax_w_low >= 0)
weight += -1 * (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_low * data_width + argmax_w_low];
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
weight += -1 * (argmax_w - argmax_w_low) *
im_data[argmax_h_low * data_width + argmax_w_high];
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
weight += (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_high * data_width + argmax_w_low];
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
weight += (argmax_w - argmax_w_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
} else if (bp_dir == 1) {
if (argmax_h_low >= 0 && argmax_w_low >= 0)
weight += -1 * (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_low];
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
weight += (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_high];
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
weight += -1 * (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_low];
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
weight += (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
}
return weight;
}
template <typename scalar_t>
__global__ void deformable_im2col_gpu_kernel(
const int n,
const scalar_t* data_im,
const scalar_t* data_offset,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int num_channels,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* data_col) {
CUDA_KERNEL_LOOP(index, n) {
// index index of output matrix
const int w_col = index % width_col;
const int h_col = (index / width_col) % height_col;
const int b_col = (index / width_col / height_col) % batch_size;
const int c_im = (index / width_col / height_col) / batch_size;
const int c_col = c_im * kernel_h * kernel_w;
// compute deformable group index
const int deformable_group_index = c_im / channel_per_deformable_group;
const int h_in = h_col * stride_h - pad_h;
const int w_in = w_col * stride_w - pad_w;
scalar_t* data_col_ptr = data_col +
((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
// const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) *
// height + h_in) * width + w_in;
const scalar_t* data_im_ptr =
data_im + (b_col * num_channels + c_im) * height * width;
const scalar_t* data_offset_ptr = data_offset +
(b_col * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
for (int i = 0; i < kernel_h; ++i) {
for (int j = 0; j < kernel_w; ++j) {
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
w_col;
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
scalar_t val = static_cast<scalar_t>(0);
const scalar_t h_im = h_in + i * dilation_h + offset_h;
const scalar_t w_im = w_in + j * dilation_w + offset_w;
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) {
// const scalar_t map_h = i * dilation_h + offset_h;
// const scalar_t map_w = j * dilation_w + offset_w;
// const int cur_height = height - h_in;
// const int cur_width = width - w_in;
// val = deformable_im2col_bilinear(data_im_ptr, width, cur_height,
// cur_width, map_h, map_w);
val = deformable_im2col_bilinear(
data_im_ptr, width, height, width, h_im, w_im);
}
*data_col_ptr = val;
data_col_ptr += batch_size * height_col * width_col;
}
}
}
}
template <typename scalar_t>
__global__ void deformable_col2im_gpu_kernel(
const int n,
const scalar_t* data_col,
const scalar_t* data_offset,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* grad_im) {
CUDA_KERNEL_LOOP(index, n) {
const int j = (index / width_col / height_col / batch_size) % kernel_w;
const int i =
(index / width_col / height_col / batch_size / kernel_w) % kernel_h;
const int c =
index / width_col / height_col / batch_size / kernel_w / kernel_h;
// compute the start and end of the output
const int deformable_group_index = c / channel_per_deformable_group;
int w_out = index % width_col;
int h_out = (index / width_col) % height_col;
int b = (index / width_col / height_col) % batch_size;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const scalar_t* data_offset_ptr = data_offset +
(b * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
const scalar_t cur_top_grad = data_col[index];
const int cur_h = (int)cur_inv_h_data;
const int cur_w = (int)cur_inv_w_data;
for (int dy = -2; dy <= 2; dy++) {
for (int dx = -2; dx <= 2; dx++) {
if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
abs(cur_inv_w_data - (cur_w + dx)) < 1) {
int cur_bottom_grad_pos =
((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
scalar_t weight = get_gradient_weight(
cur_inv_h_data,
cur_inv_w_data,
cur_h + dy,
cur_w + dx,
height,
width);
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
}
}
}
}
}
template <typename scalar_t>
__global__ void deformable_col2im_coord_gpu_kernel(
const int n,
const scalar_t* data_col,
const scalar_t* data_im,
const scalar_t* data_offset,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int offset_channels,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* grad_offset) {
CUDA_KERNEL_LOOP(index, n) {
scalar_t val = 0;
int w = index % width_col;
int h = (index / width_col) % height_col;
int c = (index / width_col / height_col) % offset_channels;
int b = (index / width_col / height_col) / offset_channels;
// compute the start and end of the output
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
const int col_step = kernel_h * kernel_w;
int cnt = 0;
const scalar_t* data_col_ptr = data_col +
deformable_group_index * channel_per_deformable_group * batch_size *
width_col * height_col;
const scalar_t* data_im_ptr = data_im +
(b * deformable_group + deformable_group_index) *
channel_per_deformable_group / kernel_h / kernel_w * height * width;
const scalar_t* data_offset_ptr = data_offset +
(b * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
col_c += col_step) {
const int col_pos =
(((col_c * batch_size + b) * height_col) + h) * width_col + w;
const int bp_dir = offset_c % 2;
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
int i =
(col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
int w_out = col_pos % width_col;
int h_out = (col_pos / width_col) % height_col;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const int data_offset_h_ptr =
(((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
const int data_offset_w_ptr =
(((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
w_out);
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
scalar_t inv_h = h_in + i * dilation_h + offset_h;
scalar_t inv_w = w_in + j * dilation_w + offset_w;
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) {
inv_h = inv_w = -2;
}
const scalar_t weight = get_coordinate_weight(
inv_h,
inv_w,
height,
width,
data_im_ptr + cnt * height * width,
width,
bp_dir);
val += weight * data_col_ptr[col_pos];
cnt += 1;
}
grad_offset[index] = val;
}
}
namespace detectron2 {
void deformable_im2col(
const at::Tensor data_im,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor data_col) {
// num_axes should be smaller than block size
// todo: check parallel_imgs is correctly passed in
int height_col =
(height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
int width_col =
(width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
int num_kernels = channels * height_col * width_col * parallel_imgs;
int channel_per_deformable_group = channels / deformable_group;
at::cuda::CUDAGuard device_guard(data_im.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_im.scalar_type(), "deformable_im2col_gpu", ([&] {
const scalar_t* data_im_ = data_im.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
deformable_im2col_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_im_,
data_offset_,
height,
width,
ksize_h,
ksize_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
parallel_imgs,
channels,
deformable_group,
height_col,
width_col,
data_col_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in deformable_im2col: %s\n", cudaGetErrorString(err));
}
}
void deformable_col2im(
const at::Tensor data_col,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor grad_im) {
// todo: make sure parallel_imgs is passed in correctly
int height_col =
(height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
int width_col =
(width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
int num_kernels =
channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
int channel_per_deformable_group = channels / deformable_group;
at::cuda::CUDAGuard device_guard(data_col.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
const scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
scalar_t* grad_im_ = grad_im.data_ptr<scalar_t>();
deformable_col2im_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_col_,
data_offset_,
channels,
height,
width,
ksize_h,
ksize_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
parallel_imgs,
deformable_group,
height_col,
width_col,
grad_im_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in deformable_col2im: %s\n", cudaGetErrorString(err));
}
}
void deformable_col2im_coord(
const at::Tensor data_col,
const at::Tensor data_im,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor grad_offset) {
int height_col =
(height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
int width_col =
(width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w *
deformable_group * parallel_imgs;
int channel_per_deformable_group =
channels * ksize_h * ksize_w / deformable_group;
at::cuda::CUDAGuard device_guard(data_col.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
const scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
const scalar_t* data_im_ = data_im.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
scalar_t* grad_offset_ = grad_offset.data_ptr<scalar_t>();
deformable_col2im_coord_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_col_,
data_im_,
data_offset_,
channels,
height,
width,
ksize_h,
ksize_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
parallel_imgs,
2 * ksize_h * ksize_w * deformable_group,
deformable_group,
height_col,
width_col,
grad_offset_);
}));
}
} // namespace detectron2
template <typename scalar_t>
__device__ scalar_t dmcn_im2col_bilinear(
const scalar_t* bottom_data,
const int data_width,
const int height,
const int width,
scalar_t h,
scalar_t w) {
int h_low = floor(h);
int w_low = floor(w);
int h_high = h_low + 1;
int w_high = w_low + 1;
scalar_t lh = h - h_low;
scalar_t lw = w - w_low;
scalar_t hh = 1 - lh, hw = 1 - lw;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
v1 = bottom_data[h_low * data_width + w_low];
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
v2 = bottom_data[h_low * data_width + w_high];
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
v3 = bottom_data[h_high * data_width + w_low];
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
v4 = bottom_data[h_high * data_width + w_high];
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename scalar_t>
__device__ scalar_t dmcn_get_gradient_weight(
scalar_t argmax_h,
scalar_t argmax_w,
const int h,
const int w,
const int height,
const int width) {
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
argmax_w >= width) {
// empty
return 0;
}
int argmax_h_low = floor(argmax_h);
int argmax_w_low = floor(argmax_w);
int argmax_h_high = argmax_h_low + 1;
int argmax_w_high = argmax_w_low + 1;
scalar_t weight = 0;
if (h == argmax_h_low && w == argmax_w_low)
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
if (h == argmax_h_low && w == argmax_w_high)
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
if (h == argmax_h_high && w == argmax_w_low)
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
if (h == argmax_h_high && w == argmax_w_high)
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
return weight;
}
template <typename scalar_t>
__device__ scalar_t dmcn_get_coordinate_weight(
scalar_t argmax_h,
scalar_t argmax_w,
const int height,
const int width,
const scalar_t* im_data,
const int data_width,
const int bp_dir) {
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 ||
argmax_w >= width) {
// empty
return 0;
}
int argmax_h_low = floor(argmax_h);
int argmax_w_low = floor(argmax_w);
int argmax_h_high = argmax_h_low + 1;
int argmax_w_high = argmax_w_low + 1;
scalar_t weight = 0;
if (bp_dir == 0) {
if (argmax_h_low >= 0 && argmax_w_low >= 0)
weight += -1 * (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_low * data_width + argmax_w_low];
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
weight += -1 * (argmax_w - argmax_w_low) *
im_data[argmax_h_low * data_width + argmax_w_high];
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
weight += (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_high * data_width + argmax_w_low];
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
weight += (argmax_w - argmax_w_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
} else if (bp_dir == 1) {
if (argmax_h_low >= 0 && argmax_w_low >= 0)
weight += -1 * (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_low];
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
weight += (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_high];
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
weight += -1 * (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_low];
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
weight += (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
}
return weight;
}
template <typename scalar_t>
__global__ void modulated_deformable_im2col_gpu_kernel(
const int n,
const scalar_t* data_im,
const scalar_t* data_offset,
const scalar_t* data_mask,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int num_channels,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* data_col) {
CUDA_KERNEL_LOOP(index, n) {
// index index of output matrix
const int w_col = index % width_col;
const int h_col = (index / width_col) % height_col;
const int b_col = (index / width_col / height_col) % batch_size;
const int c_im = (index / width_col / height_col) / batch_size;
const int c_col = c_im * kernel_h * kernel_w;
// compute deformable group index
const int deformable_group_index = c_im / channel_per_deformable_group;
const int h_in = h_col * stride_h - pad_h;
const int w_in = w_col * stride_w - pad_w;
scalar_t* data_col_ptr = data_col +
((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
// const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) *
// height + h_in) * width + w_in;
const scalar_t* data_im_ptr =
data_im + (b_col * num_channels + c_im) * height * width;
const scalar_t* data_offset_ptr = data_offset +
(b_col * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
const scalar_t* data_mask_ptr = data_mask +
(b_col * deformable_group + deformable_group_index) * kernel_h *
kernel_w * height_col * width_col;
for (int i = 0; i < kernel_h; ++i) {
for (int j = 0; j < kernel_w; ++j) {
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
w_col;
const int data_mask_hw_ptr =
((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
scalar_t val = static_cast<scalar_t>(0);
const scalar_t h_im = h_in + i * dilation_h + offset_h;
const scalar_t w_im = w_in + j * dilation_w + offset_w;
// if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) {
// const float map_h = i * dilation_h + offset_h;
// const float map_w = j * dilation_w + offset_w;
// const int cur_height = height - h_in;
// const int cur_width = width - w_in;
// val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height,
// cur_width, map_h, map_w);
val = dmcn_im2col_bilinear(
data_im_ptr, width, height, width, h_im, w_im);
}
*data_col_ptr = val * mask;
data_col_ptr += batch_size * height_col * width_col;
// data_col_ptr += height_col * width_col;
}
}
}
}
template <typename scalar_t>
__global__ void modulated_deformable_col2im_gpu_kernel(
const int n,
const scalar_t* data_col,
const scalar_t* data_offset,
const scalar_t* data_mask,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* grad_im) {
CUDA_KERNEL_LOOP(index, n) {
const int j = (index / width_col / height_col / batch_size) % kernel_w;
const int i =
(index / width_col / height_col / batch_size / kernel_w) % kernel_h;
const int c =
index / width_col / height_col / batch_size / kernel_w / kernel_h;
// compute the start and end of the output
const int deformable_group_index = c / channel_per_deformable_group;
int w_out = index % width_col;
int h_out = (index / width_col) % height_col;
int b = (index / width_col / height_col) % batch_size;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const scalar_t* data_offset_ptr = data_offset +
(b * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
const scalar_t* data_mask_ptr = data_mask +
(b * deformable_group + deformable_group_index) * kernel_h * kernel_w *
height_col * width_col;
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
const int data_mask_hw_ptr =
((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
const scalar_t cur_top_grad = data_col[index] * mask;
const int cur_h = (int)cur_inv_h_data;
const int cur_w = (int)cur_inv_w_data;
for (int dy = -2; dy <= 2; dy++) {
for (int dx = -2; dx <= 2; dx++) {
if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
abs(cur_inv_w_data - (cur_w + dx)) < 1) {
int cur_bottom_grad_pos =
((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
scalar_t weight = dmcn_get_gradient_weight(
cur_inv_h_data,
cur_inv_w_data,
cur_h + dy,
cur_w + dx,
height,
width);
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
}
}
}
}
}
template <typename scalar_t>
__global__ void modulated_deformable_col2im_coord_gpu_kernel(
const int n,
const scalar_t* data_col,
const scalar_t* data_im,
const scalar_t* data_offset,
const scalar_t* data_mask,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int batch_size,
const int offset_channels,
const int deformable_group,
const int height_col,
const int width_col,
scalar_t* grad_offset,
scalar_t* grad_mask) {
CUDA_KERNEL_LOOP(index, n) {
scalar_t val = 0, mval = 0;
int w = index % width_col;
int h = (index / width_col) % height_col;
int c = (index / width_col / height_col) % offset_channels;
int b = (index / width_col / height_col) / offset_channels;
// compute the start and end of the output
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
const int col_step = kernel_h * kernel_w;
int cnt = 0;
const scalar_t* data_col_ptr = data_col +
deformable_group_index * channel_per_deformable_group * batch_size *
width_col * height_col;
const scalar_t* data_im_ptr = data_im +
(b * deformable_group + deformable_group_index) *
channel_per_deformable_group / kernel_h / kernel_w * height * width;
const scalar_t* data_offset_ptr = data_offset +
(b * deformable_group + deformable_group_index) * 2 * kernel_h *
kernel_w * height_col * width_col;
const scalar_t* data_mask_ptr = data_mask +
(b * deformable_group + deformable_group_index) * kernel_h * kernel_w *
height_col * width_col;
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
col_c += col_step) {
const int col_pos =
(((col_c * batch_size + b) * height_col) + h) * width_col + w;
const int bp_dir = offset_c % 2;
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
int i =
(col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
int w_out = col_pos % width_col;
int h_out = (col_pos / width_col) % height_col;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const int data_offset_h_ptr =
(((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
const int data_offset_w_ptr =
(((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
w_out);
const int data_mask_hw_ptr =
(((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
scalar_t inv_h = h_in + i * dilation_h + offset_h;
scalar_t inv_w = w_in + j * dilation_w + offset_w;
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) {
inv_h = inv_w = -2;
} else {
mval += data_col_ptr[col_pos] *
dmcn_im2col_bilinear(
data_im_ptr + cnt * height * width,
width,
height,
width,
inv_h,
inv_w);
}
const scalar_t weight = dmcn_get_coordinate_weight(
inv_h,
inv_w,
height,
width,
data_im_ptr + cnt * height * width,
width,
bp_dir);
val += weight * data_col_ptr[col_pos] * mask;
cnt += 1;
}
// KERNEL_ASSIGN(grad_offset[index], offset_req, val);
grad_offset[index] = val;
if (offset_c % 2 == 0)
// KERNEL_ASSIGN(grad_mask[(((b * deformable_group +
// deformable_group_index) * kernel_h * kernel_w + offset_c / 2) *
// height_col + h) * width_col + w], mask_req, mval);
grad_mask
[(((b * deformable_group + deformable_group_index) * kernel_h *
kernel_w +
offset_c / 2) *
height_col +
h) *
width_col +
w] = mval;
}
}
namespace detectron2 {
void modulated_deformable_im2col_cuda(
const at::Tensor data_im,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kenerl_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor data_col) {
// num_axes should be smaller than block size
const int channel_per_deformable_group = channels / deformable_group;
const int num_kernels = channels * batch_size * height_col * width_col;
at::cuda::CUDAGuard device_guard(data_im.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] {
const scalar_t* data_im_ = data_im.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
const scalar_t* data_mask_ = data_mask.data_ptr<scalar_t>();
scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
modulated_deformable_im2col_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_im_,
data_offset_,
data_mask_,
height_im,
width_im,
kernel_h,
kenerl_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
batch_size,
channels,
deformable_group,
height_col,
width_col,
data_col_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf(
"error in modulated_deformable_im2col_cuda: %s\n",
cudaGetErrorString(err));
}
}
void modulated_deformable_col2im_cuda(
const at::Tensor data_col,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor grad_im) {
const int channel_per_deformable_group = channels / deformable_group;
const int num_kernels =
channels * kernel_h * kernel_w * batch_size * height_col * width_col;
at::cuda::CUDAGuard device_guard(data_col.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] {
const scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
const scalar_t* data_mask_ = data_mask.data_ptr<scalar_t>();
scalar_t* grad_im_ = grad_im.data_ptr<scalar_t>();
modulated_deformable_col2im_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_col_,
data_offset_,
data_mask_,
channels,
height_im,
width_im,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
batch_size,
deformable_group,
height_col,
width_col,
grad_im_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf(
"error in modulated_deformable_col2im_cuda: %s\n",
cudaGetErrorString(err));
}
}
void modulated_deformable_col2im_coord_cuda(
const at::Tensor data_col,
const at::Tensor data_im,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor grad_offset,
at::Tensor grad_mask) {
const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h *
kernel_w * deformable_group;
const int channel_per_deformable_group =
channels * kernel_h * kernel_w / deformable_group;
at::cuda::CUDAGuard device_guard(data_col.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] {
const scalar_t* data_col_ = data_col.data_ptr<scalar_t>();
const scalar_t* data_im_ = data_im.data_ptr<scalar_t>();
const scalar_t* data_offset_ = data_offset.data_ptr<scalar_t>();
const scalar_t* data_mask_ = data_mask.data_ptr<scalar_t>();
scalar_t* grad_offset_ = grad_offset.data_ptr<scalar_t>();
scalar_t* grad_mask_ = grad_mask.data_ptr<scalar_t>();
modulated_deformable_col2im_coord_gpu_kernel<<<
GET_BLOCKS(num_kernels),
CUDA_NUM_THREADS,
0,
stream>>>(
num_kernels,
data_col_,
data_im_,
data_offset_,
data_mask_,
channels,
height_im,
width_im,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
channel_per_deformable_group,
batch_size,
2 * kernel_h * kernel_w * deformable_group,
deformable_group,
height_col,
width_col,
grad_offset_,
grad_mask_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf(
"error in modulated_deformable_col2im_coord_cuda: %s\n",
cudaGetErrorString(err));
}
}
} // namespace detectron2