abubakar123456's picture
Upload 750 files
71d94dd verified
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from typing import List, Optional, Tuple
import torch
from fvcore.nn import sigmoid_focal_loss_jit
from torch import nn
from torch.nn import functional as F
from detectron2.layers import ShapeSpec, batched_nms
from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance
from detectron2.utils.events import get_event_storage
from ..anchor_generator import DefaultAnchorGenerator
from ..backbone import Backbone
from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss
from .dense_detector import DenseDetector
from .retinanet import RetinaNetHead
__all__ = ["FCOS"]
logger = logging.getLogger(__name__)
class FCOS(DenseDetector):
"""
Implement FCOS in :paper:`fcos`.
"""
def __init__(
self,
*,
backbone: Backbone,
head: nn.Module,
head_in_features: Optional[List[str]] = None,
box2box_transform=None,
num_classes,
center_sampling_radius: float = 1.5,
focal_loss_alpha=0.25,
focal_loss_gamma=2.0,
test_score_thresh=0.2,
test_topk_candidates=1000,
test_nms_thresh=0.6,
max_detections_per_image=100,
pixel_mean,
pixel_std,
):
"""
Args:
center_sampling_radius: radius of the "center" of a groundtruth box,
within which all anchor points are labeled positive.
Other arguments mean the same as in :class:`RetinaNet`.
"""
super().__init__(
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std
)
self.num_classes = num_classes
# FCOS uses one anchor point per location.
# We represent the anchor point by a box whose size equals the anchor stride.
feature_shapes = backbone.output_shape()
fpn_strides = [feature_shapes[k].stride for k in self.head_in_features]
self.anchor_generator = DefaultAnchorGenerator(
sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides
)
# FCOS parameterizes box regression by a linear transform,
# where predictions are normalized by anchor stride (equal to anchor size).
if box2box_transform is None:
box2box_transform = Box2BoxTransformLinear(normalize_by_size=True)
self.box2box_transform = box2box_transform
self.center_sampling_radius = float(center_sampling_radius)
# Loss parameters:
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
# Inference parameters:
self.test_score_thresh = test_score_thresh
self.test_topk_candidates = test_topk_candidates
self.test_nms_thresh = test_nms_thresh
self.max_detections_per_image = max_detections_per_image
def forward_training(self, images, features, predictions, gt_instances):
# Transpose the Hi*Wi*A dimension to the middle:
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions(
predictions, [self.num_classes, 4, 1]
)
anchors = self.anchor_generator(features)
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances)
return self.losses(
anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness
)
@torch.no_grad()
def _match_anchors(self, gt_boxes: Boxes, anchors: List[Boxes]):
"""
Match ground-truth boxes to a set of multi-level anchors.
Args:
gt_boxes: Ground-truth boxes from instances of an image.
anchors: List of anchors for each feature map (of different scales).
Returns:
torch.Tensor
A tensor of shape `(M, R)`, given `M` ground-truth boxes and total
`R` anchor points from all feature levels, indicating the quality
of match between m-th box and r-th anchor. Higher value indicates
better match.
"""
# Naming convention: (M = ground-truth boxes, R = anchor points)
# Anchor points are represented as square boxes of size = stride.
num_anchors_per_level = [len(x) for x in anchors]
anchors = Boxes.cat(anchors) # (R, 4)
anchor_centers = anchors.get_centers() # (R, 2)
anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] # (R, )
lower_bound = anchor_sizes * 4
lower_bound[: num_anchors_per_level[0]] = 0
upper_bound = anchor_sizes * 8
upper_bound[-num_anchors_per_level[-1] :] = float("inf")
gt_centers = gt_boxes.get_centers()
# FCOS with center sampling: anchor point must be close enough to
# ground-truth box center.
center_dists = (anchor_centers[None, :, :] - gt_centers[:, None, :]).abs_()
sampling_regions = self.center_sampling_radius * anchor_sizes[None, :]
match_quality_matrix = center_dists.max(dim=2).values < sampling_regions
pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_boxes)
pairwise_dist = pairwise_dist.permute(1, 0, 2) # (M, R, 4)
# The original FCOS anchor matching rule: anchor point must be inside GT.
match_quality_matrix &= pairwise_dist.min(dim=2).values > 0
# Multilevel anchor matching in FCOS: each anchor is only responsible
# for certain scale range.
pairwise_dist = pairwise_dist.max(dim=2).values
match_quality_matrix &= (pairwise_dist > lower_bound[None, :]) & (
pairwise_dist < upper_bound[None, :]
)
# Match the GT box with minimum area, if there are multiple GT matches.
gt_areas = gt_boxes.area() # (M, )
match_quality_matrix = match_quality_matrix.to(torch.float32)
match_quality_matrix *= 1e8 - gt_areas[:, None]
return match_quality_matrix # (M, R)
@torch.no_grad()
def label_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]):
"""
Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS
anchor matching rule.
Unlike RetinaNet, there are no ignored anchors.
"""
gt_labels, matched_gt_boxes = [], []
for inst in gt_instances:
if len(inst) > 0:
match_quality_matrix = self._match_anchors(inst.gt_boxes, anchors)
# Find matched ground-truth box per anchor. Un-matched anchors are
# assigned -1. This is equivalent to using an anchor matcher as used
# in R-CNN/RetinaNet: `Matcher(thresholds=[1e-5], labels=[0, 1])`
match_quality, matched_idxs = match_quality_matrix.max(dim=0)
matched_idxs[match_quality < 1e-5] = -1
matched_gt_boxes_i = inst.gt_boxes.tensor[matched_idxs.clip(min=0)]
gt_labels_i = inst.gt_classes[matched_idxs.clip(min=0)]
# Anchors with matched_idxs = -1 are labeled background.
gt_labels_i[matched_idxs < 0] = self.num_classes
else:
matched_gt_boxes_i = torch.zeros_like(Boxes.cat(anchors).tensor)
gt_labels_i = torch.full(
(len(matched_gt_boxes_i),),
fill_value=self.num_classes,
dtype=torch.long,
device=matched_gt_boxes_i.device,
)
gt_labels.append(gt_labels_i)
matched_gt_boxes.append(matched_gt_boxes_i)
return gt_labels, matched_gt_boxes
def losses(
self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness
):
"""
This method is almost identical to :meth:`RetinaNet.losses`, with an extra
"loss_centerness" in the returned dict.
"""
num_images = len(gt_labels)
gt_labels = torch.stack(gt_labels) # (M, R)
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes)
num_pos_anchors = pos_mask.sum().item()
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images)
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300)
# classification and regression loss
gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[
:, :, :-1
] # no loss for the last (background) class
loss_cls = sigmoid_focal_loss_jit(
torch.cat(pred_logits, dim=1),
gt_labels_target.to(pred_logits[0].dtype),
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum",
)
loss_box_reg = _dense_box_regression_loss(
anchors,
self.box2box_transform,
pred_anchor_deltas,
gt_boxes,
pos_mask,
box_reg_loss_type="giou",
)
ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) # (M, R)
pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) # (M, R)
ctrness_loss = F.binary_cross_entropy_with_logits(
pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum"
)
return {
"loss_fcos_cls": loss_cls / normalizer,
"loss_fcos_loc": loss_box_reg / normalizer,
"loss_fcos_ctr": ctrness_loss / normalizer,
}
def compute_ctrness_targets(self, anchors: List[Boxes], gt_boxes: List[torch.Tensor]):
anchors = Boxes.cat(anchors).tensor # Rx4
reg_targets = [self.box2box_transform.get_deltas(anchors, m) for m in gt_boxes]
reg_targets = torch.stack(reg_targets, dim=0) # NxRx4
if len(reg_targets) == 0:
return reg_targets.new_zeros(len(reg_targets))
left_right = reg_targets[:, :, [0, 2]]
top_bottom = reg_targets[:, :, [1, 3]]
ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]
)
return torch.sqrt(ctrness)
def forward_inference(
self,
images: ImageList,
features: List[torch.Tensor],
predictions: List[List[torch.Tensor]],
):
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions(
predictions, [self.num_classes, 4, 1]
)
anchors = self.anchor_generator(features)
results: List[Instances] = []
for img_idx, image_size in enumerate(images.image_sizes):
scores_per_image = [
# Multiply and sqrt centerness & classification scores
# (See eqn. 4 in https://arxiv.org/abs/2006.09214)
torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_())
for x, y in zip(pred_logits, pred_centerness)
]
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas]
results_per_image = self.inference_single_image(
anchors, scores_per_image, deltas_per_image, image_size
)
results.append(results_per_image)
return results
def inference_single_image(
self,
anchors: List[Boxes],
box_cls: List[torch.Tensor],
box_delta: List[torch.Tensor],
image_size: Tuple[int, int],
):
"""
Identical to :meth:`RetinaNet.inference_single_image.
"""
pred = self._decode_multi_level_predictions(
anchors,
box_cls,
box_delta,
self.test_score_thresh,
self.test_topk_candidates,
image_size,
)
keep = batched_nms(
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh
)
return pred[keep[: self.max_detections_per_image]]
class FCOSHead(RetinaNetHead):
"""
The head used in :paper:`fcos`. It adds an additional centerness
prediction branch on top of :class:`RetinaNetHead`.
"""
def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs):
super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs)
# Unlike original FCOS, we do not add an additional learnable scale layer
# because it's found to have no benefits after normalizing regression targets by stride.
self._num_features = len(input_shape)
self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1)
torch.nn.init.normal_(self.ctrness.weight, std=0.01)
torch.nn.init.constant_(self.ctrness.bias, 0)
def forward(self, features):
assert len(features) == self._num_features
logits = []
bbox_reg = []
ctrness = []
for feature in features:
logits.append(self.cls_score(self.cls_subnet(feature)))
bbox_feature = self.bbox_subnet(feature)
bbox_reg.append(self.bbox_pred(bbox_feature))
ctrness.append(self.ctrness(bbox_feature))
return logits, bbox_reg, ctrness