|
import os |
|
import numpy as np |
|
import torch |
|
import argparse |
|
from torch.utils.data import Dataset, DataLoader |
|
from diffusers.image_processor import VaeImageProcessor |
|
from tqdm import tqdm |
|
from PIL import Image, ImageFilter |
|
|
|
from model.pipeline import CatVTONPipeline |
|
|
|
class InferenceDataset(Dataset): |
|
def __init__(self, args): |
|
self.args = args |
|
|
|
self.vae_processor = VaeImageProcessor(vae_scale_factor=8) |
|
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) |
|
self.data = self.load_data() |
|
|
|
def load_data(self): |
|
return [] |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
data = self.data[idx] |
|
person, cloth, mask = [Image.open(data[key]) for key in ['person', 'cloth', 'mask']] |
|
return { |
|
'index': idx, |
|
'person_name': data['person_name'], |
|
'person': self.vae_processor.preprocess(person, self.args.height, self.args.width)[0], |
|
'cloth': self.vae_processor.preprocess(cloth, self.args.height, self.args.width)[0], |
|
'mask': self.mask_processor.preprocess(mask, self.args.height, self.args.width)[0] |
|
} |
|
|
|
class VITONHDTestDataset(InferenceDataset): |
|
def load_data(self): |
|
assert os.path.exists(pair_txt:=os.path.join(self.args.data_root_path, 'test_pairs_unpaired.txt')), f"File {pair_txt} does not exist." |
|
with open(pair_txt, 'r') as f: |
|
lines = f.readlines() |
|
self.args.data_root_path = os.path.join(self.args.data_root_path, "test") |
|
output_dir = os.path.join(self.args.output_dir, "vitonhd", 'unpaired' if not self.args.eval_pair else 'paired') |
|
data = [] |
|
for line in lines: |
|
person_img, cloth_img = line.strip().split(" ") |
|
if os.path.exists(os.path.join(output_dir, person_img)): |
|
continue |
|
if self.args.eval_pair: |
|
cloth_img = person_img |
|
data.append({ |
|
'person_name': person_img, |
|
'person': os.path.join(self.args.data_root_path, 'image', person_img), |
|
'cloth': os.path.join(self.args.data_root_path, 'cloth', cloth_img), |
|
'mask': os.path.join(self.args.data_root_path, 'agnostic-mask', person_img.replace('.jpg', '_mask.png')), |
|
}) |
|
return data |
|
|
|
class DressCodeTestDataset(InferenceDataset): |
|
def load_data(self): |
|
data = [] |
|
for sub_folder in ['upper_body', 'lower_body', 'dresses']: |
|
assert os.path.exists(os.path.join(self.args.data_root_path, sub_folder)), f"Folder {sub_folder} does not exist." |
|
pair_txt = os.path.join(self.args.data_root_path, sub_folder, 'test_pairs_paired.txt' if self.args.eval_pair else 'test_pairs_unpaired.txt') |
|
assert os.path.exists(pair_txt), f"File {pair_txt} does not exist." |
|
with open(pair_txt, 'r') as f: |
|
lines = f.readlines() |
|
|
|
output_dir = os.path.join(self.args.output_dir, f"dresscode-{self.args.height}", |
|
'unpaired' if not self.args.eval_pair else 'paired', sub_folder) |
|
for line in lines: |
|
person_img, cloth_img = line.strip().split(" ") |
|
if os.path.exists(os.path.join(output_dir, person_img)): |
|
continue |
|
data.append({ |
|
'person_name': os.path.join(sub_folder, person_img), |
|
'person': os.path.join(self.args.data_root_path, sub_folder, 'images', person_img), |
|
'cloth': os.path.join(self.args.data_root_path, sub_folder, 'images', cloth_img), |
|
'mask': os.path.join(self.args.data_root_path, sub_folder, 'agnostic_masks', person_img.replace('.jpg', '.png')) |
|
}) |
|
return data |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--base_model_path", |
|
type=str, |
|
default="runwayml/stable-diffusion-inpainting", |
|
help=( |
|
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." |
|
), |
|
) |
|
parser.add_argument( |
|
"--resume_path", |
|
type=str, |
|
default="zhengchong/CatVTON", |
|
help=( |
|
"The Path to the checkpoint of trained tryon model." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
required=True, |
|
help="The datasets to use for evaluation.", |
|
) |
|
parser.add_argument( |
|
"--data_root_path", |
|
type=str, |
|
required=True, |
|
help="Path to the dataset to evaluate." |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="output", |
|
help="The output directory where the model predictions will be written.", |
|
) |
|
|
|
parser.add_argument( |
|
"--seed", type=int, default=555, help="A seed for reproducible evaluation." |
|
) |
|
parser.add_argument( |
|
"--batch_size", type=int, default=8, help="The batch size for evaluation." |
|
) |
|
|
|
parser.add_argument( |
|
"--num_inference_steps", |
|
type=int, |
|
default=50, |
|
help="Number of inference steps to perform.", |
|
) |
|
parser.add_argument( |
|
"--guidance_scale", |
|
type=float, |
|
default=2.5, |
|
help="The scale of classifier-free guidance for inference.", |
|
) |
|
|
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=384, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--repaint", |
|
action="store_true", |
|
help="Whether to repaint the result image with the original background." |
|
) |
|
parser.add_argument( |
|
"--eval_pair", |
|
action="store_true", |
|
help="Whether or not to evaluate the pair.", |
|
) |
|
parser.add_argument( |
|
"--concat_eval_results", |
|
action="store_true", |
|
help="Whether or not to concatenate the all conditions into one image.", |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
default=True, |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=8, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="bf16", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--concat_axis", |
|
type=str, |
|
choices=["x", "y", 'random'], |
|
default="y", |
|
help="The axis to concat the cloth feature, select from ['x', 'y', 'random'].", |
|
) |
|
parser.add_argument( |
|
"--enable_condition_noise", |
|
action="store_true", |
|
default=True, |
|
help="Whether or not to enable condition noise.", |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
def repaint(person, mask, result): |
|
_, h = result.size |
|
kernal_size = h // 50 |
|
if kernal_size % 2 == 0: |
|
kernal_size += 1 |
|
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size)) |
|
person_np = np.array(person) |
|
result_np = np.array(result) |
|
mask_np = np.array(mask) / 255 |
|
repaint_result = person_np * (1 - mask_np) + result_np * mask_np |
|
repaint_result = Image.fromarray(repaint_result.astype(np.uint8)) |
|
return repaint_result |
|
|
|
def to_pil_image(images): |
|
images = (images / 2 + 0.5).clamp(0, 1) |
|
images = images.cpu().permute(0, 2, 3, 1).float().numpy() |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
if images.shape[-1] == 1: |
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
else: |
|
pil_images = [Image.fromarray(image) for image in images] |
|
return pil_images |
|
|
|
@torch.no_grad() |
|
def main(): |
|
args = parse_args() |
|
|
|
pipeline = CatVTONPipeline( |
|
attn_ckpt_version=args.dataset_name, |
|
attn_ckpt=args.resume_path, |
|
base_ckpt=args.base_model_path, |
|
weight_dtype={ |
|
"no": torch.float32, |
|
"fp16": torch.float16, |
|
"bf16": torch.bfloat16, |
|
}[args.mixed_precision], |
|
|
|
device='cpu', |
|
skip_safety_check=True |
|
) |
|
|
|
if args.dataset_name == "vitonhd": |
|
dataset = VITONHDTestDataset(args) |
|
elif args.dataset_name == "dresscode": |
|
dataset = DressCodeTestDataset(args) |
|
else: |
|
raise ValueError(f"Invalid dataset name {args.dataset}.") |
|
print(f"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.") |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
shuffle=False, |
|
num_workers=args.dataloader_num_workers |
|
) |
|
|
|
|
|
generator = torch.Generator(device='cpu').manual_seed(args.seed) |
|
args.output_dir = os.path.join(args.output_dir, f"{args.dataset_name}-{args.height}", "paired" if args.eval_pair else "unpaired") |
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
for batch in tqdm(dataloader): |
|
person_images = batch['person'] |
|
cloth_images = batch['cloth'] |
|
masks = batch['mask'] |
|
results = pipeline( |
|
person_images, |
|
cloth_images, |
|
masks, |
|
num_inference_steps=args.num_inference_steps, |
|
guidance_scale=args.guidance_scale, |
|
height=args.height, |
|
width=args.width, |
|
generator=generator, |
|
) |
|
|
|
if args.concat_eval_results or args.repaint: |
|
person_images = to_pil_image(person_images) |
|
cloth_images = to_pil_image(cloth_images) |
|
masks = to_pil_image(masks) |
|
for i, result in enumerate(results): |
|
person_name = batch['person_name'][i] |
|
output_path = os.path.join(args.output_dir, person_name) |
|
if not os.path.exists(os.path.dirname(output_path)): |
|
os.makedirs(os.path.dirname(output_path)) |
|
if args.repaint: |
|
person_path, mask_path = dataset.data[batch['index'][i]]['person'], dataset.data[batch['index'][i]]['mask'] |
|
person_image= Image.open(person_path).resize(result.size, Image.LANCZOS) |
|
mask = Image.open(mask_path).resize(result.size, Image.NEAREST) |
|
result = repaint(person_image, mask, result) |
|
if args.concat_eval_results: |
|
w, h = result.size |
|
concated_result = Image.new('RGB', (w*3, h)) |
|
concated_result.paste(person_images[i], (0, 0)) |
|
concated_result.paste(cloth_images[i], (w, 0)) |
|
concated_result.paste(result, (w*2, 0)) |
|
result = concated_result |
|
result.save(output_path) |
|
|
|
if __name__ == "__main__": |
|
main() |