Fashable-Tryon / inference.py
abubakar123456's picture
Upload 18 files
5edd223 verified
import os
import numpy as np
import torch
import argparse
from torch.utils.data import Dataset, DataLoader
from diffusers.image_processor import VaeImageProcessor
from tqdm import tqdm
from PIL import Image, ImageFilter
from model.pipeline import CatVTONPipeline
class InferenceDataset(Dataset):
def __init__(self, args):
self.args = args
self.vae_processor = VaeImageProcessor(vae_scale_factor=8)
self.mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
self.data = self.load_data()
def load_data(self):
return []
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
person, cloth, mask = [Image.open(data[key]) for key in ['person', 'cloth', 'mask']]
return {
'index': idx,
'person_name': data['person_name'],
'person': self.vae_processor.preprocess(person, self.args.height, self.args.width)[0],
'cloth': self.vae_processor.preprocess(cloth, self.args.height, self.args.width)[0],
'mask': self.mask_processor.preprocess(mask, self.args.height, self.args.width)[0]
}
class VITONHDTestDataset(InferenceDataset):
def load_data(self):
assert os.path.exists(pair_txt:=os.path.join(self.args.data_root_path, 'test_pairs_unpaired.txt')), f"File {pair_txt} does not exist."
with open(pair_txt, 'r') as f:
lines = f.readlines()
self.args.data_root_path = os.path.join(self.args.data_root_path, "test")
output_dir = os.path.join(self.args.output_dir, "vitonhd", 'unpaired' if not self.args.eval_pair else 'paired')
data = []
for line in lines:
person_img, cloth_img = line.strip().split(" ")
if os.path.exists(os.path.join(output_dir, person_img)):
continue
if self.args.eval_pair:
cloth_img = person_img
data.append({
'person_name': person_img,
'person': os.path.join(self.args.data_root_path, 'image', person_img),
'cloth': os.path.join(self.args.data_root_path, 'cloth', cloth_img),
'mask': os.path.join(self.args.data_root_path, 'agnostic-mask', person_img.replace('.jpg', '_mask.png')),
})
return data
class DressCodeTestDataset(InferenceDataset):
def load_data(self):
data = []
for sub_folder in ['upper_body', 'lower_body', 'dresses']:
assert os.path.exists(os.path.join(self.args.data_root_path, sub_folder)), f"Folder {sub_folder} does not exist."
pair_txt = os.path.join(self.args.data_root_path, sub_folder, 'test_pairs_paired.txt' if self.args.eval_pair else 'test_pairs_unpaired.txt')
assert os.path.exists(pair_txt), f"File {pair_txt} does not exist."
with open(pair_txt, 'r') as f:
lines = f.readlines()
output_dir = os.path.join(self.args.output_dir, f"dresscode-{self.args.height}",
'unpaired' if not self.args.eval_pair else 'paired', sub_folder)
for line in lines:
person_img, cloth_img = line.strip().split(" ")
if os.path.exists(os.path.join(output_dir, person_img)):
continue
data.append({
'person_name': os.path.join(sub_folder, person_img),
'person': os.path.join(self.args.data_root_path, sub_folder, 'images', person_img),
'cloth': os.path.join(self.args.data_root_path, sub_folder, 'images', cloth_img),
'mask': os.path.join(self.args.data_root_path, sub_folder, 'agnostic_masks', person_img.replace('.jpg', '.png'))
})
return data
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="runwayml/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--dataset_name",
type=str,
required=True,
help="The datasets to use for evaluation.",
)
parser.add_argument(
"--data_root_path",
type=str,
required=True,
help="Path to the dataset to evaluate."
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--seed", type=int, default=555, help="A seed for reproducible evaluation."
)
parser.add_argument(
"--batch_size", type=int, default=8, help="The batch size for evaluation."
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=50,
help="Number of inference steps to perform.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=2.5,
help="The scale of classifier-free guidance for inference.",
)
parser.add_argument(
"--width",
type=int,
default=384,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--eval_pair",
action="store_true",
help="Whether or not to evaluate the pair.",
)
parser.add_argument(
"--concat_eval_results",
action="store_true",
help="Whether or not to concatenate the all conditions into one image.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=8,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--concat_axis",
type=str,
choices=["x", "y", 'random'],
default="y",
help="The axis to concat the cloth feature, select from ['x', 'y', 'random'].",
)
parser.add_argument(
"--enable_condition_noise",
action="store_true",
default=True,
help="Whether or not to enable condition noise.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def repaint(person, mask, result):
_, h = result.size
kernal_size = h // 50
if kernal_size % 2 == 0:
kernal_size += 1
mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
person_np = np.array(person)
result_np = np.array(result)
mask_np = np.array(mask) / 255
repaint_result = person_np * (1 - mask_np) + result_np * mask_np
repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
return repaint_result
def to_pil_image(images):
images = (images / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@torch.no_grad()
def main():
args = parse_args()
# Pipeline
pipeline = CatVTONPipeline(
attn_ckpt_version=args.dataset_name,
attn_ckpt=args.resume_path,
base_ckpt=args.base_model_path,
weight_dtype={
"no": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}[args.mixed_precision],
# device="cuda",
device='cpu',
skip_safety_check=True
)
# Dataset
if args.dataset_name == "vitonhd":
dataset = VITONHDTestDataset(args)
elif args.dataset_name == "dresscode":
dataset = DressCodeTestDataset(args)
else:
raise ValueError(f"Invalid dataset name {args.dataset}.")
print(f"Dataset {args.dataset_name} loaded, total {len(dataset)} pairs.")
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.dataloader_num_workers
)
# Inference
# generator = torch.Generator(device='cuda').manual_seed(args.seed)
generator = torch.Generator(device='cpu').manual_seed(args.seed)
args.output_dir = os.path.join(args.output_dir, f"{args.dataset_name}-{args.height}", "paired" if args.eval_pair else "unpaired")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
for batch in tqdm(dataloader):
person_images = batch['person']
cloth_images = batch['cloth']
masks = batch['mask']
results = pipeline(
person_images,
cloth_images,
masks,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
height=args.height,
width=args.width,
generator=generator,
)
if args.concat_eval_results or args.repaint:
person_images = to_pil_image(person_images)
cloth_images = to_pil_image(cloth_images)
masks = to_pil_image(masks)
for i, result in enumerate(results):
person_name = batch['person_name'][i]
output_path = os.path.join(args.output_dir, person_name)
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
if args.repaint:
person_path, mask_path = dataset.data[batch['index'][i]]['person'], dataset.data[batch['index'][i]]['mask']
person_image= Image.open(person_path).resize(result.size, Image.LANCZOS)
mask = Image.open(mask_path).resize(result.size, Image.NEAREST)
result = repaint(person_image, mask, result)
if args.concat_eval_results:
w, h = result.size
concated_result = Image.new('RGB', (w*3, h))
concated_result.paste(person_images[i], (0, 0))
concated_result.paste(cloth_images[i], (w, 0))
concated_result.paste(result, (w*2, 0))
result = concated_result
result.save(output_path)
if __name__ == "__main__":
main()