|
from model.SCHP import networks |
|
from model.SCHP.utils.transforms import get_affine_transform, transform_logits |
|
|
|
from collections import OrderedDict |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
dataset_settings = { |
|
'lip': { |
|
'input_size': [473, 473], |
|
'num_classes': 20, |
|
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', |
|
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', |
|
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] |
|
}, |
|
'atr': { |
|
'input_size': [512, 512], |
|
'num_classes': 18, |
|
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', |
|
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] |
|
}, |
|
'pascal': { |
|
'input_size': [512, 512], |
|
'num_classes': 7, |
|
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], |
|
} |
|
} |
|
|
|
class SCHP: |
|
def __init__(self, ckpt_path, device): |
|
dataset_type = None |
|
if 'lip' in ckpt_path: |
|
dataset_type = 'lip' |
|
elif 'atr' in ckpt_path: |
|
dataset_type = 'atr' |
|
elif 'pascal' in ckpt_path: |
|
dataset_type = 'pascal' |
|
assert dataset_type is not None, 'Dataset type not found in checkpoint path' |
|
self.device = device |
|
self.num_classes = dataset_settings[dataset_type]['num_classes'] |
|
self.input_size = dataset_settings[dataset_type]['input_size'] |
|
self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0] |
|
self.palette = get_palette(self.num_classes) |
|
|
|
self.label = dataset_settings[dataset_type]['label'] |
|
self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None).to(device) |
|
self.load_ckpt(ckpt_path) |
|
self.model.eval() |
|
|
|
self.transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) |
|
]) |
|
self.upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True) |
|
|
|
|
|
def load_ckpt(self, ckpt_path): |
|
rename_map = { |
|
"decoder.conv3.2.weight": "decoder.conv3.3.weight", |
|
"decoder.conv3.3.weight": "decoder.conv3.4.weight", |
|
"decoder.conv3.3.bias": "decoder.conv3.4.bias", |
|
"decoder.conv3.3.running_mean": "decoder.conv3.4.running_mean", |
|
"decoder.conv3.3.running_var": "decoder.conv3.4.running_var", |
|
"fushion.3.weight": "fushion.4.weight", |
|
"fushion.3.bias": "fushion.4.bias", |
|
} |
|
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict'] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
new_state_dict_ = OrderedDict() |
|
for k, v in list(new_state_dict.items()): |
|
if k in rename_map: |
|
new_state_dict_[rename_map[k]] = v |
|
else: |
|
new_state_dict_[k] = v |
|
self.model.load_state_dict(new_state_dict_, strict=False) |
|
|
|
def _box2cs(self, box): |
|
x, y, w, h = box[:4] |
|
return self._xywh2cs(x, y, w, h) |
|
|
|
def _xywh2cs(self, x, y, w, h): |
|
center = np.zeros((2), dtype=np.float32) |
|
center[0] = x + w * 0.5 |
|
center[1] = y + h * 0.5 |
|
if w > self.aspect_ratio * h: |
|
h = w * 1.0 / self.aspect_ratio |
|
elif w < self.aspect_ratio * h: |
|
w = h * self.aspect_ratio |
|
scale = np.array([w, h], dtype=np.float32) |
|
return center, scale |
|
|
|
def preprocess(self, image): |
|
if isinstance(image, str): |
|
img = cv2.imread(image, cv2.IMREAD_COLOR) |
|
elif isinstance(image, Image.Image): |
|
|
|
img = np.array(image) |
|
|
|
h, w, _ = img.shape |
|
|
|
person_center, s = self._box2cs([0, 0, w - 1, h - 1]) |
|
r = 0 |
|
trans = get_affine_transform(person_center, s, r, self.input_size) |
|
input = cv2.warpAffine( |
|
img, |
|
trans, |
|
(int(self.input_size[1]), int(self.input_size[0])), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0, 0, 0)) |
|
|
|
input = self.transform(input).to(self.device).unsqueeze(0) |
|
meta = { |
|
'center': person_center, |
|
'height': h, |
|
'width': w, |
|
'scale': s, |
|
'rotation': r |
|
} |
|
return input, meta |
|
|
|
|
|
def __call__(self, image_or_path): |
|
if isinstance(image_or_path, list): |
|
image_list = [] |
|
meta_list = [] |
|
for image in image_or_path: |
|
image, meta = self.preprocess(image) |
|
image_list.append(image) |
|
meta_list.append(meta) |
|
image = torch.cat(image_list, dim=0) |
|
else: |
|
image, meta = self.preprocess(image_or_path) |
|
meta_list = [meta] |
|
|
|
output = self.model(image) |
|
|
|
upsample_outputs = self.upsample(output) |
|
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) |
|
|
|
output_img_list = [] |
|
for upsample_output, meta in zip(upsample_outputs, meta_list): |
|
c, s, w, h = meta['center'], meta['scale'], meta['width'], meta['height'] |
|
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size) |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) |
|
output_img.putpalette(self.palette) |
|
output_img_list.append(output_img) |
|
|
|
return output_img_list[0] if len(output_img_list) == 1 else output_img_list |