--- datasets: - TryOnVirtual/VITON-HD-IMAGE language: - en base_model: - zhengchong/CatVTON --- # Fashibles ## Installation Create a conda environment & Install requirments ```shell conda create -n catvton python==3.9.0 conda activate catvton cd CatVTON-fashable # or your path to CatVTON project dir pip install -r requirements.txt ``` ## Run the Project First Init This will full the pretrained freeze models ```shell python app.py \ --output_dir="resource/demo/output" \ --mixed_precision="bf16" \ --allow_tf32 ``` ## Run as an API Server ```shell python app_api.py ``` ## API Call Sample Payload ```js import axios from "axios"; const form = new FormData(); form.append("person_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/assets/istockphoto-521071031-612x612.jpg"); form.append("cloth_image", "/Users/ahmadabdulnasirshuaib/wsp/ml-al/clothChanger/resource/demo/example/condition/upper/24083449_54173465_2048.jpg"); form.append("cloth_type", "upper"); const options = { method: 'POST', url: 'http://127.0.0.1:8000/process_images', headers: { 'Content-Type': 'multipart/form-data; boundary=---011000010111000001101001', 'User-Agent': 'insomnia/9.3.3' }, data: '[form]' }; axios.request(options).then(function (response) { console.log(response.data); }).catch(function (error) { console.error(error); }); ``` ### Gradio App To deploy the Gradio App for CatVTON on your machine, run the following command, and checkpoints will be automatically downloaded from HuggingFace. ```shell CUDA_VISIBLE_DEVICES=0 python app.py \ --output_dir="resource/demo/output" \ --mixed_precision="bf16" \ --allow_tf32 ``` When using `bf16` precision, generating results with a resolution of `1024x768` only requires about `8G` VRAM. ##