# Common training-related configs that are designed for "tools/lazyconfig_train_net.py" # You can use your own instead, together with your own train_net.py train = dict( output_dir="./output", init_checkpoint="", max_iter=90000, amp=dict(enabled=False), # options for Automatic Mixed Precision ddp=dict( # options for DistributedDataParallel broadcast_buffers=False, find_unused_parameters=False, fp16_compression=False, ), checkpointer=dict(period=5000, max_to_keep=100), # options for PeriodicCheckpointer eval_period=5000, log_period=20, # device="cuda", device="cpu", # ... )