import glob import os from random import randint import shutil import time import cv2 import numpy as np import torch from PIL import Image from densepose import add_densepose_config from densepose.vis.base import CompoundVisualizer from densepose.vis.densepose_results import DensePoseResultsFineSegmentationVisualizer from densepose.vis.extractor import create_extractor, CompoundExtractor from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.engine.defaults import DefaultPredictor class DensePose: """ DensePose used in this project is from Detectron2 (https://github.com/facebookresearch/detectron2). These codes are modified from https://github.com/facebookresearch/detectron2/tree/main/projects/DensePose. The checkpoint is downloaded from https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/doc/DENSEPOSE_IUV.md#ModelZoo. We use the model R_50_FPN_s1x with id 165712039, but other models should also work. The config file is downloaded from https://github.com/facebookresearch/detectron2/tree/main/projects/DensePose/configs. Noted that the config file should match the model checkpoint and Base-DensePose-RCNN-FPN.yaml is also needed. """ # def __init__(self, model_path="./checkpoints/densepose_", device="cuda"): def __init__(self, model_path="./checkpoints/densepose_", device="cpu"): self.device = device self.config_path = os.path.join(model_path, 'densepose_rcnn_R_50_FPN_s1x.yaml') self.model_path = os.path.join(model_path, 'model_final_162be9.pkl') self.visualizations = ["dp_segm"] self.VISUALIZERS = {"dp_segm": DensePoseResultsFineSegmentationVisualizer} self.min_score = 0.8 self.cfg = self.setup_config() self.predictor = DefaultPredictor(self.cfg) self.predictor.model.to(self.device) def setup_config(self): opts = ["MODEL.ROI_HEADS.SCORE_THRESH_TEST", str(self.min_score)] cfg = get_cfg() add_densepose_config(cfg) cfg.merge_from_file(self.config_path) cfg.merge_from_list(opts) cfg.MODEL.WEIGHTS = self.model_path cfg.freeze() return cfg @staticmethod def _get_input_file_list(input_spec: str): if os.path.isdir(input_spec): file_list = [os.path.join(input_spec, fname) for fname in os.listdir(input_spec) if os.path.isfile(os.path.join(input_spec, fname))] elif os.path.isfile(input_spec): file_list = [input_spec] else: file_list = glob.glob(input_spec) return file_list def create_context(self, cfg, output_path): vis_specs = self.visualizations visualizers = [] extractors = [] for vis_spec in vis_specs: texture_atlas = texture_atlases_dict = None vis = self.VISUALIZERS[vis_spec]( cfg=cfg, texture_atlas=texture_atlas, texture_atlases_dict=texture_atlases_dict, alpha=1.0 ) visualizers.append(vis) extractor = create_extractor(vis) extractors.append(extractor) visualizer = CompoundVisualizer(visualizers) extractor = CompoundExtractor(extractors) context = { "extractor": extractor, "visualizer": visualizer, "out_fname": output_path, "entry_idx": 0, } return context def execute_on_outputs(self, context, entry, outputs): extractor = context["extractor"] data = extractor(outputs) H, W, _ = entry["image"].shape result = np.zeros((H, W), dtype=np.uint8) data, box = data[0] x, y, w, h = [int(_) for _ in box[0].cpu().numpy()] i_array = data[0].labels[None].cpu().numpy()[0] result[y:y + h, x:x + w] = i_array result = Image.fromarray(result) result.save(context["out_fname"]) def __call__(self, image_or_path, resize=512) -> Image.Image: """ :param image_or_path: Path of the input image. :param resize: Resize the input image if its max size is larger than this value. :return: Dense pose image. """ # random tmp path with timestamp tmp_path = f"./densepose_/tmp/" if not os.path.exists(tmp_path): os.makedirs(tmp_path) image_path = os.path.join(tmp_path, f"{int(time.time())}-{self.device}-{randint(0, 100000)}.png") if isinstance(image_or_path, str): assert image_or_path.split(".")[-1] in ["jpg", "png"], "Only support jpg and png images." shutil.copy(image_or_path, image_path) elif isinstance(image_or_path, Image.Image): image_or_path.save(image_path) else: shutil.rmtree(tmp_path) raise TypeError("image_path must be str or PIL.Image.Image") output_path = image_path.replace(".png", "_dense.png").replace(".jpg", "_dense.png") w, h = Image.open(image_path).size file_list = self._get_input_file_list(image_path) assert len(file_list), "No input images found!" context = self.create_context(self.cfg, output_path) for file_name in file_list: img = read_image(file_name, format="BGR") # predictor expects BGR image. # resize if (_ := max(img.shape)) > resize: scale = resize / _ img = cv2.resize(img, (int(img.shape[1] * scale), int(img.shape[0] * scale))) with torch.no_grad(): outputs = self.predictor(img)["instances"] try: self.execute_on_outputs(context, {"file_name": file_name, "image": img}, outputs) except Exception as e: null_gray = Image.new('L', (1, 1)) null_gray.save(output_path) dense_gray = Image.open(output_path).convert("L") dense_gray = dense_gray.resize((w, h), Image.NEAREST) # remove image_path and output_path os.remove(image_path) os.remove(output_path) return dense_gray if __name__ == '__main__': pass