File size: 2,560 Bytes
9ba4fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b09f
 
9ba4fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b09f
9ba4fa8
 
 
760b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba4fa8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilroberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilroberta-base

This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2660
- Accuracy: 0.7504

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.2373        | 1.0   | 2355  | 1.1927          | 0.6802   |
| 0.9192        | 2.0   | 4710  | 1.0538          | 0.7118   |
| 0.6782        | 3.0   | 7065  | 0.9921          | 0.7288   |
| 0.5687        | 4.0   | 9420  | 1.0542          | 0.7421   |
| 0.4598        | 5.0   | 11775 | 1.2043          | 0.7384   |
| 0.3557        | 6.0   | 14130 | 1.2833          | 0.7459   |
| 0.3126        | 7.0   | 16485 | 1.4286          | 0.7459   |
| 0.2541        | 8.0   | 18840 | 1.5076          | 0.7419   |
| 0.1948        | 9.0   | 21195 | 1.6771          | 0.7371   |
| 0.1576        | 10.0  | 23550 | 1.8419          | 0.7429   |
| 0.1071        | 11.0  | 25905 | 1.9164          | 0.7467   |
| 0.0977        | 12.0  | 28260 | 1.9773          | 0.7466   |
| 0.0652        | 13.0  | 30615 | 2.0582          | 0.7486   |
| 0.0752        | 14.0  | 32970 | 2.1108          | 0.7482   |
| 0.0594        | 15.0  | 35325 | 2.1406          | 0.7492   |
| 0.049         | 16.0  | 37680 | 2.1958          | 0.7485   |
| 0.0267        | 17.0  | 40035 | 2.1858          | 0.7499   |
| 0.0339        | 18.0  | 42390 | 2.2162          | 0.7503   |
| 0.0137        | 19.0  | 44745 | 2.2699          | 0.7503   |
| 0.0083        | 20.0  | 47100 | 2.2660          | 0.7504   |


### Framework versions

- Transformers 4.28.1
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3