--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-ft-10000_2 results: [] --- # whisper-medium-ft-10000_2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Wer: 10.1641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3583 | 1.0 | 625 | 0.2361 | 32.4521 | | 0.0928 | 2.0 | 1250 | 0.2281 | 10.0273 | | 0.0368 | 3.0 | 1875 | 0.2280 | 10.8478 | | 0.0123 | 4.0 | 2500 | 0.2604 | 10.6655 | | 0.0039 | 5.0 | 3125 | 0.2571 | 10.3008 | | 0.0011 | 6.0 | 3750 | 0.2654 | 10.1641 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3