--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-ft-GPT_2 results: [] --- # whisper-medium-ft-GPT_2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2050 - Wer: 16.5802 - Gpt: 8.8352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Gpt | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.6033 | 1.0 | 188 | 0.2203 | 22.8603 | 8.5556 | | 0.116 | 2.0 | 376 | 0.1960 | 15.4966 | 8.7544 | | 0.0392 | 3.0 | 564 | 0.1955 | 14.0854 | 8.9071 | | 0.0155 | 4.0 | 752 | 0.2029 | 16.9373 | 8.7654 | | 0.0052 | 5.0 | 940 | 0.2053 | 16.7842 | 8.6612 | | 0.0015 | 6.0 | 1128 | 0.2050 | 16.5802 | 8.8352 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3