File size: 16,163 Bytes
23378f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a4d88
23378f7
 
d6a4d88
23378f7
 
d6a4d88
23378f7
 
d6a4d88
23378f7
 
 
 
 
 
 
 
 
d6a4d88
 
 
 
 
 
 
 
23378f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a4d88
23378f7
 
 
 
 
d6a4d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23378f7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- sembr2023
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sembr2023-distilbert-base-uncased
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: sembr2023
      type: sembr2023
      config: sembr2023
      split: test
      args: sembr2023
    metrics:
    - name: Precision
      type: precision
      value: 0.7588342440801458
    - name: Recall
      type: recall
      value: 0.8253863426231673
    - name: F1
      type: f1
      value: 0.790712387700873
    - name: Accuracy
      type: accuracy
      value: 0.9613411398987951
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sembr2023-distilbert-base-uncased

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sembr2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2562
- Precision: 0.7588
- Recall: 0.8254
- F1: 0.7907
- Iou: 0.6539
- Accuracy: 0.9613
- Balanced Accuracy: 0.9000
- Overall Accuracy: 0.9468

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Iou    | Accuracy | Balanced Accuracy | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
| 0.4048        | 0.07  | 10   | 0.4102          | 0         | 0.0    | 0.0    | 0.0    | 0.9115   | 0.5               | 0.9115           |
| 0.3834        | 0.14  | 20   | 0.3950          | 0         | 0.0    | 0.0    | 0.0    | 0.9115   | 0.5               | 0.9115           |
| 0.3817        | 0.21  | 30   | 0.3616          | 0         | 0.0    | 0.0    | 0.0    | 0.9115   | 0.5               | 0.9115           |
| 0.2982        | 0.28  | 40   | 0.3127          | 0         | 0.0    | 0.0    | 0.0    | 0.9115   | 0.5               | 0.9115           |
| 0.2505        | 0.35  | 50   | 0.2716          | 0.6064    | 0.7118 | 0.6549 | 0.4869 | 0.9336   | 0.8335            | 0.9149           |
| 0.2176        | 0.42  | 60   | 0.2119          | 0.8427    | 0.5653 | 0.6767 | 0.5114 | 0.9522   | 0.7775            | 0.9411           |
| 0.2018        | 0.49  | 70   | 0.2031          | 0.7785    | 0.7056 | 0.7402 | 0.5876 | 0.9562   | 0.8430            | 0.9391           |
| 0.1609        | 0.56  | 80   | 0.1825          | 0.8199    | 0.6992 | 0.7548 | 0.6061 | 0.9598   | 0.8422            | 0.9437           |
| 0.153         | 0.62  | 90   | 0.1820          | 0.7830    | 0.7362 | 0.7589 | 0.6115 | 0.9586   | 0.8582            | 0.9421           |
| 0.1336        | 0.69  | 100  | 0.1760          | 0.7955    | 0.7323 | 0.7626 | 0.6163 | 0.9597   | 0.8570            | 0.9447           |
| 0.1351        | 0.76  | 110  | 0.1691          | 0.8314    | 0.7243 | 0.7742 | 0.6316 | 0.9626   | 0.8550            | 0.9460           |
| 0.1393        | 0.83  | 120  | 0.1742          | 0.8028    | 0.7506 | 0.7758 | 0.6338 | 0.9616   | 0.8664            | 0.9454           |
| 0.1013        | 0.9   | 130  | 0.1657          | 0.7991    | 0.7608 | 0.7795 | 0.6387 | 0.9619   | 0.8711            | 0.9454           |
| 0.0969        | 0.97  | 140  | 0.1681          | 0.7926    | 0.7702 | 0.7812 | 0.6410 | 0.9618   | 0.8753            | 0.9461           |
| 0.1009        | 1.04  | 150  | 0.1624          | 0.8247    | 0.7475 | 0.7842 | 0.6450 | 0.9636   | 0.8660            | 0.9485           |
| 0.086         | 1.11  | 160  | 0.1532          | 0.8062    | 0.7793 | 0.7925 | 0.6564 | 0.9639   | 0.8806            | 0.9496           |
| 0.0732        | 1.18  | 170  | 0.1710          | 0.7633    | 0.8185 | 0.7899 | 0.6528 | 0.9615   | 0.8969            | 0.9465           |
| 0.0804        | 1.25  | 180  | 0.1731          | 0.8098    | 0.7735 | 0.7912 | 0.6546 | 0.9639   | 0.8779            | 0.9472           |
| 0.0865        | 1.32  | 190  | 0.1659          | 0.7905    | 0.7863 | 0.7884 | 0.6507 | 0.9627   | 0.8830            | 0.9486           |
| 0.0867        | 1.39  | 200  | 0.1716          | 0.7704    | 0.8082 | 0.7888 | 0.6513 | 0.9617   | 0.8924            | 0.9452           |
| 0.0769        | 1.46  | 210  | 0.1644          | 0.8122    | 0.7678 | 0.7894 | 0.6520 | 0.9637   | 0.8753            | 0.9486           |
| 0.0639        | 1.53  | 220  | 0.1668          | 0.7927    | 0.7786 | 0.7856 | 0.6469 | 0.9624   | 0.8794            | 0.9474           |
| 0.0642        | 1.6   | 230  | 0.1669          | 0.7960    | 0.7830 | 0.7895 | 0.6521 | 0.9630   | 0.8818            | 0.9482           |
| 0.0598        | 1.67  | 240  | 0.1776          | 0.7959    | 0.7802 | 0.7880 | 0.6501 | 0.9628   | 0.8804            | 0.9464           |
| 0.0679        | 1.74  | 250  | 0.1938          | 0.7436    | 0.8338 | 0.7861 | 0.6476 | 0.9599   | 0.9030            | 0.9423           |
| 0.0578        | 1.81  | 260  | 0.1669          | 0.7965    | 0.7855 | 0.7910 | 0.6542 | 0.9633   | 0.8830            | 0.9494           |
| 0.0587        | 1.88  | 270  | 0.1750          | 0.7982    | 0.7833 | 0.7907 | 0.6538 | 0.9633   | 0.8820            | 0.9468           |
| 0.0624        | 1.94  | 280  | 0.1759          | 0.7684    | 0.8249 | 0.7956 | 0.6606 | 0.9625   | 0.9004            | 0.9482           |
| 0.0494        | 2.01  | 290  | 0.1868          | 0.7606    | 0.8194 | 0.7889 | 0.6514 | 0.9612   | 0.8972            | 0.9447           |
| 0.0418        | 2.08  | 300  | 0.1746          | 0.8089    | 0.7769 | 0.7926 | 0.6564 | 0.9640   | 0.8795            | 0.9501           |
| 0.0406        | 2.15  | 310  | 0.1900          | 0.7778    | 0.8157 | 0.7963 | 0.6616 | 0.9631   | 0.8966            | 0.9477           |
| 0.0417        | 2.22  | 320  | 0.2066          | 0.7754    | 0.8165 | 0.7954 | 0.6603 | 0.9628   | 0.8968            | 0.9467           |
| 0.0438        | 2.29  | 330  | 0.2037          | 0.7623    | 0.8282 | 0.7939 | 0.6582 | 0.9619   | 0.9015            | 0.9461           |
| 0.0454        | 2.36  | 340  | 0.1882          | 0.7671    | 0.8221 | 0.7936 | 0.6579 | 0.9622   | 0.8989            | 0.9487           |
| 0.0372        | 2.43  | 350  | 0.1896          | 0.7937    | 0.8082 | 0.8009 | 0.6679 | 0.9644   | 0.8939            | 0.9489           |
| 0.0301        | 2.5   | 360  | 0.1846          | 0.8058    | 0.7913 | 0.7985 | 0.6646 | 0.9647   | 0.8864            | 0.9503           |
| 0.0334        | 2.57  | 370  | 0.1867          | 0.7723    | 0.8212 | 0.7960 | 0.6611 | 0.9628   | 0.8988            | 0.9498           |
| 0.038         | 2.64  | 380  | 0.2099          | 0.7538    | 0.8276 | 0.7890 | 0.6516 | 0.9608   | 0.9007            | 0.9463           |
| 0.0427        | 2.71  | 390  | 0.2050          | 0.7625    | 0.8272 | 0.7935 | 0.6577 | 0.9619   | 0.9011            | 0.9460           |
| 0.0373        | 2.78  | 400  | 0.2002          | 0.7779    | 0.8086 | 0.7930 | 0.6569 | 0.9626   | 0.8931            | 0.9487           |
| 0.0308        | 2.85  | 410  | 0.2002          | 0.7501    | 0.8260 | 0.7863 | 0.6478 | 0.9603   | 0.8997            | 0.9449           |
| 0.035         | 2.92  | 420  | 0.2034          | 0.7656    | 0.8173 | 0.7906 | 0.6537 | 0.9617   | 0.8965            | 0.9470           |
| 0.0265        | 2.99  | 430  | 0.1877          | 0.7766    | 0.8202 | 0.7978 | 0.6637 | 0.9632   | 0.8987            | 0.9487           |
| 0.0358        | 3.06  | 440  | 0.2140          | 0.7555    | 0.8300 | 0.7910 | 0.6542 | 0.9612   | 0.9020            | 0.9470           |
| 0.0286        | 3.12  | 450  | 0.2084          | 0.7775    | 0.8052 | 0.7911 | 0.6544 | 0.9624   | 0.8914            | 0.9487           |
| 0.0335        | 3.19  | 460  | 0.2084          | 0.7706    | 0.8144 | 0.7919 | 0.6555 | 0.9621   | 0.8954            | 0.9468           |
| 0.0304        | 3.26  | 470  | 0.2231          | 0.7506    | 0.8280 | 0.7874 | 0.6494 | 0.9604   | 0.9007            | 0.9458           |
| 0.0255        | 3.33  | 480  | 0.2194          | 0.7501    | 0.8348 | 0.7902 | 0.6532 | 0.9608   | 0.9039            | 0.9459           |
| 0.0209        | 3.4   | 490  | 0.2186          | 0.7602    | 0.8300 | 0.7936 | 0.6578 | 0.9618   | 0.9023            | 0.9469           |
| 0.0237        | 3.47  | 500  | 0.2138          | 0.7731    | 0.8196 | 0.7957 | 0.6607 | 0.9628   | 0.8981            | 0.9488           |
| 0.0263        | 3.54  | 510  | 0.2268          | 0.7565    | 0.8313 | 0.7921 | 0.6558 | 0.9614   | 0.9027            | 0.9472           |
| 0.0196        | 3.61  | 520  | 0.2157          | 0.7626    | 0.8242 | 0.7922 | 0.6559 | 0.9617   | 0.8996            | 0.9473           |
| 0.0225        | 3.68  | 530  | 0.2265          | 0.7664    | 0.8185 | 0.7916 | 0.6551 | 0.9619   | 0.8971            | 0.9469           |
| 0.0226        | 3.75  | 540  | 0.2316          | 0.7628    | 0.8139 | 0.7875 | 0.6495 | 0.9611   | 0.8947            | 0.9461           |
| 0.0226        | 3.82  | 550  | 0.2100          | 0.7812    | 0.8130 | 0.7968 | 0.6622 | 0.9633   | 0.8954            | 0.9493           |
| 0.024         | 3.89  | 560  | 0.2213          | 0.7670    | 0.8196 | 0.7924 | 0.6562 | 0.9620   | 0.8977            | 0.9487           |
| 0.0194        | 3.96  | 570  | 0.2227          | 0.7673    | 0.8164 | 0.7911 | 0.6544 | 0.9618   | 0.8962            | 0.9483           |
| 0.0153        | 4.03  | 580  | 0.2296          | 0.7621    | 0.8245 | 0.7921 | 0.6557 | 0.9617   | 0.8997            | 0.9462           |
| 0.0168        | 4.1   | 590  | 0.2362          | 0.7522    | 0.8237 | 0.7863 | 0.6479 | 0.9604   | 0.8987            | 0.9463           |
| 0.0215        | 4.17  | 600  | 0.2413          | 0.7629    | 0.8183 | 0.7896 | 0.6524 | 0.9614   | 0.8968            | 0.9470           |
| 0.0173        | 4.24  | 610  | 0.2411          | 0.7550    | 0.8196 | 0.7859 | 0.6474 | 0.9605   | 0.8969            | 0.9461           |
| 0.0196        | 4.31  | 620  | 0.2315          | 0.7625    | 0.8239 | 0.7920 | 0.6557 | 0.9617   | 0.8995            | 0.9471           |
| 0.0186        | 4.38  | 630  | 0.2593          | 0.7370    | 0.8377 | 0.7841 | 0.6449 | 0.9592   | 0.9043            | 0.9432           |
| 0.0183        | 4.44  | 640  | 0.2368          | 0.7660    | 0.8255 | 0.7947 | 0.6593 | 0.9623   | 0.9005            | 0.9477           |
| 0.0178        | 4.51  | 650  | 0.2326          | 0.7705    | 0.8237 | 0.7962 | 0.6614 | 0.9627   | 0.8999            | 0.9486           |
| 0.017         | 4.58  | 660  | 0.2457          | 0.7448    | 0.8352 | 0.7874 | 0.6493 | 0.9601   | 0.9037            | 0.9454           |
| 0.0175        | 4.65  | 670  | 0.2311          | 0.7694    | 0.8209 | 0.7943 | 0.6588 | 0.9624   | 0.8985            | 0.9485           |
| 0.0163        | 4.72  | 680  | 0.2426          | 0.7696    | 0.8208 | 0.7944 | 0.6589 | 0.9624   | 0.8985            | 0.9484           |
| 0.0163        | 4.79  | 690  | 0.2400          | 0.7527    | 0.8305 | 0.7897 | 0.6525 | 0.9609   | 0.9020            | 0.9462           |
| 0.0122        | 4.86  | 700  | 0.2328          | 0.7656    | 0.8208 | 0.7922 | 0.6559 | 0.9619   | 0.8982            | 0.9476           |
| 0.0205        | 4.93  | 710  | 0.2483          | 0.7474    | 0.8305 | 0.7868 | 0.6485 | 0.9602   | 0.9016            | 0.9452           |
| 0.0154        | 5.0   | 720  | 0.2350          | 0.7612    | 0.8206 | 0.7898 | 0.6526 | 0.9614   | 0.8978            | 0.9472           |
| 0.0155        | 5.07  | 730  | 0.2581          | 0.7570    | 0.8263 | 0.7901 | 0.6531 | 0.9612   | 0.9003            | 0.9463           |
| 0.0137        | 5.14  | 740  | 0.2482          | 0.7592    | 0.8242 | 0.7904 | 0.6534 | 0.9613   | 0.8994            | 0.9472           |
| 0.0124        | 5.21  | 750  | 0.2507          | 0.7639    | 0.8185 | 0.7903 | 0.6533 | 0.9616   | 0.8970            | 0.9466           |
| 0.0121        | 5.28  | 760  | 0.2509          | 0.7586    | 0.8229 | 0.7894 | 0.6521 | 0.9612   | 0.8987            | 0.9470           |
| 0.016         | 5.35  | 770  | 0.2552          | 0.7625    | 0.8173 | 0.7890 | 0.6515 | 0.9613   | 0.8963            | 0.9466           |
| 0.0131        | 5.42  | 780  | 0.2500          | 0.7573    | 0.8231 | 0.7889 | 0.6513 | 0.9610   | 0.8988            | 0.9467           |
| 0.0111        | 5.49  | 790  | 0.2647          | 0.7496    | 0.8312 | 0.7883 | 0.6506 | 0.9605   | 0.9021            | 0.9453           |
| 0.0113        | 5.56  | 800  | 0.2529          | 0.7646    | 0.8226 | 0.7926 | 0.6564 | 0.9619   | 0.8990            | 0.9475           |
| 0.0141        | 5.62  | 810  | 0.2521          | 0.7623    | 0.8230 | 0.7915 | 0.6549 | 0.9616   | 0.8990            | 0.9474           |
| 0.0123        | 5.69  | 820  | 0.2558          | 0.7523    | 0.8282 | 0.7884 | 0.6508 | 0.9607   | 0.9008            | 0.9458           |
| 0.0113        | 5.76  | 830  | 0.2560          | 0.7585    | 0.8208 | 0.7884 | 0.6507 | 0.9610   | 0.8977            | 0.9465           |
| 0.0176        | 5.83  | 840  | 0.2560          | 0.7553    | 0.8263 | 0.7892 | 0.6518 | 0.9609   | 0.9002            | 0.9466           |
| 0.0137        | 5.9   | 850  | 0.2539          | 0.7628    | 0.8233 | 0.7919 | 0.6555 | 0.9617   | 0.8992            | 0.9471           |
| 0.0159        | 5.97  | 860  | 0.2574          | 0.7574    | 0.8246 | 0.7896 | 0.6523 | 0.9611   | 0.8995            | 0.9464           |
| 0.0107        | 6.04  | 870  | 0.2573          | 0.7561    | 0.8257 | 0.7894 | 0.6520 | 0.9610   | 0.8999            | 0.9464           |
| 0.01          | 6.11  | 880  | 0.2562          | 0.7633    | 0.8204 | 0.7908 | 0.6540 | 0.9616   | 0.8978            | 0.9471           |
| 0.0112        | 6.18  | 890  | 0.2574          | 0.7618    | 0.8218 | 0.7907 | 0.6538 | 0.9615   | 0.8984            | 0.9469           |
| 0.0111        | 6.25  | 900  | 0.2563          | 0.7598    | 0.8239 | 0.7906 | 0.6537 | 0.9614   | 0.8993            | 0.9469           |
| 0.0135        | 6.32  | 910  | 0.2558          | 0.7578    | 0.8263 | 0.7905 | 0.6536 | 0.9613   | 0.9003            | 0.9468           |
| 0.0171        | 6.39  | 920  | 0.2554          | 0.7601    | 0.8251 | 0.7913 | 0.6546 | 0.9615   | 0.8999            | 0.9470           |
| 0.0115        | 6.46  | 930  | 0.2563          | 0.7602    | 0.8254 | 0.7915 | 0.6549 | 0.9615   | 0.9001            | 0.9469           |
| 0.0127        | 6.53  | 940  | 0.2561          | 0.7591    | 0.8258 | 0.7910 | 0.6543 | 0.9614   | 0.9002            | 0.9468           |
| 0.0107        | 6.6   | 950  | 0.2563          | 0.7584    | 0.8258 | 0.7906 | 0.6538 | 0.9613   | 0.9001            | 0.9467           |
| 0.0129        | 6.67  | 960  | 0.2567          | 0.7579    | 0.8259 | 0.7905 | 0.6535 | 0.9613   | 0.9002            | 0.9467           |
| 0.012         | 6.74  | 970  | 0.2567          | 0.7580    | 0.8257 | 0.7904 | 0.6534 | 0.9612   | 0.9000            | 0.9467           |
| 0.0141        | 6.81  | 980  | 0.2563          | 0.7587    | 0.8254 | 0.7907 | 0.6538 | 0.9613   | 0.9000            | 0.9468           |
| 0.0116        | 6.88  | 990  | 0.2562          | 0.7588    | 0.8254 | 0.7907 | 0.6539 | 0.9613   | 0.9000            | 0.9468           |
| 0.0097        | 6.94  | 1000 | 0.2562          | 0.7588    | 0.8254 | 0.7907 | 0.6539 | 0.9613   | 0.9000            | 0.9468           |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1