File size: 15,650 Bytes
23378f7
 
 
 
 
 
 
 
 
 
 
 
ea847d1
23378f7
 
 
 
 
 
 
ea847d1
23378f7
ea847d1
 
 
 
 
 
 
 
23378f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a4d88
23378f7
 
 
 
 
ea847d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23378f7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sembr2023-distilbert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sembr2023-distilbert-base-uncased

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2391
- Precision: 0.8025
- Recall: 0.8289
- F1: 0.8155
- Iou: 0.6885
- Accuracy: 0.9655
- Balanced Accuracy: 0.9041
- Overall Accuracy: 0.9498

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Iou    | Accuracy | Balanced Accuracy | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
| 0.4046        | 0.06  | 10   | 0.4081          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.376         | 0.12  | 20   | 0.3776          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.3291        | 0.18  | 30   | 0.2954          | 0.8417    | 0.0813 | 0.1482 | 0.0801 | 0.9141   | 0.5399            | 0.9134           |
| 0.2309        | 0.24  | 40   | 0.2165          | 0.8158    | 0.6008 | 0.6920 | 0.5290 | 0.9508   | 0.7935            | 0.9357           |
| 0.1704        | 0.3   | 50   | 0.1928          | 0.8703    | 0.6428 | 0.7394 | 0.5866 | 0.9583   | 0.8166            | 0.9420           |
| 0.1711        | 0.36  | 60   | 0.1810          | 0.7918    | 0.7620 | 0.7766 | 0.6348 | 0.9597   | 0.8709            | 0.9404           |
| 0.1716        | 0.42  | 70   | 0.1841          | 0.8143    | 0.7735 | 0.7934 | 0.6575 | 0.9629   | 0.8778            | 0.9426           |
| 0.1452        | 0.48  | 80   | 0.1610          | 0.9013    | 0.6827 | 0.7769 | 0.6352 | 0.9639   | 0.8376            | 0.9486           |
| 0.1233        | 0.55  | 90   | 0.1604          | 0.8569    | 0.7587 | 0.8048 | 0.6734 | 0.9662   | 0.8729            | 0.9487           |
| 0.1291        | 0.61  | 100  | 0.1694          | 0.8405    | 0.7794 | 0.8088 | 0.6789 | 0.9661   | 0.8822            | 0.9475           |
| 0.1335        | 0.67  | 110  | 0.1529          | 0.8730    | 0.7445 | 0.8036 | 0.6717 | 0.9665   | 0.8667            | 0.9494           |
| 0.0921        | 0.73  | 120  | 0.1675          | 0.8238    | 0.8090 | 0.8164 | 0.6897 | 0.9665   | 0.8958            | 0.9462           |
| 0.0936        | 0.79  | 130  | 0.1469          | 0.8672    | 0.7738 | 0.8178 | 0.6918 | 0.9683   | 0.8809            | 0.9520           |
| 0.1168        | 0.85  | 140  | 0.1570          | 0.8190    | 0.8088 | 0.8139 | 0.6862 | 0.9660   | 0.8953            | 0.9483           |
| 0.091         | 0.91  | 150  | 0.1630          | 0.8330    | 0.7842 | 0.8079 | 0.6777 | 0.9657   | 0.8841            | 0.9477           |
| 0.0795        | 0.97  | 160  | 0.1413          | 0.8477    | 0.7934 | 0.8196 | 0.6944 | 0.9679   | 0.8895            | 0.9539           |
| 0.0927        | 1.03  | 170  | 0.1678          | 0.8071    | 0.8218 | 0.8144 | 0.6869 | 0.9655   | 0.9009            | 0.9467           |
| 0.0748        | 1.09  | 180  | 0.1346          | 0.8785    | 0.7628 | 0.8166 | 0.6900 | 0.9685   | 0.8761            | 0.9563           |
| 0.0731        | 1.15  | 190  | 0.1691          | 0.8290    | 0.8018 | 0.8152 | 0.6880 | 0.9666   | 0.8925            | 0.9485           |
| 0.0842        | 1.21  | 200  | 0.1561          | 0.8264    | 0.8127 | 0.8195 | 0.6942 | 0.9671   | 0.8977            | 0.9512           |
| 0.0702        | 1.27  | 210  | 0.1419          | 0.8459    | 0.7931 | 0.8187 | 0.6930 | 0.9677   | 0.8892            | 0.9539           |
| 0.0577        | 1.33  | 220  | 0.1506          | 0.8375    | 0.8057 | 0.8213 | 0.6968 | 0.9678   | 0.8950            | 0.9521           |
| 0.0596        | 1.39  | 230  | 0.1628          | 0.7907    | 0.8377 | 0.8135 | 0.6856 | 0.9647   | 0.9076            | 0.9485           |
| 0.0562        | 1.45  | 240  | 0.1585          | 0.8413    | 0.7953 | 0.8176 | 0.6915 | 0.9674   | 0.8900            | 0.9518           |
| 0.0519        | 1.52  | 250  | 0.1740          | 0.8062    | 0.8189 | 0.8125 | 0.6842 | 0.9652   | 0.8995            | 0.9490           |
| 0.0547        | 1.58  | 260  | 0.1751          | 0.8593    | 0.7752 | 0.8151 | 0.6879 | 0.9677   | 0.8812            | 0.9521           |
| 0.0604        | 1.64  | 270  | 0.1693          | 0.8155    | 0.8116 | 0.8136 | 0.6857 | 0.9658   | 0.8965            | 0.9503           |
| 0.043         | 1.7   | 280  | 0.1939          | 0.8106    | 0.8264 | 0.8184 | 0.6926 | 0.9663   | 0.9034            | 0.9490           |
| 0.0538        | 1.76  | 290  | 0.1800          | 0.8320    | 0.8146 | 0.8232 | 0.6996 | 0.9678   | 0.8990            | 0.9515           |
| 0.0557        | 1.82  | 300  | 0.1762          | 0.7867    | 0.8289 | 0.8073 | 0.6768 | 0.9636   | 0.9031            | 0.9473           |
| 0.0493        | 1.88  | 310  | 0.1646          | 0.8411    | 0.7894 | 0.8144 | 0.6870 | 0.9669   | 0.8872            | 0.9519           |
| 0.0524        | 1.94  | 320  | 0.1674          | 0.8155    | 0.8205 | 0.8180 | 0.6921 | 0.9664   | 0.9009            | 0.9507           |
| 0.0445        | 2.0   | 330  | 0.1616          | 0.8186    | 0.8075 | 0.8130 | 0.6849 | 0.9658   | 0.8947            | 0.9511           |
| 0.0399        | 2.06  | 340  | 0.2141          | 0.7818    | 0.8352 | 0.8076 | 0.6773 | 0.9634   | 0.9058            | 0.9455           |
| 0.039         | 2.12  | 350  | 0.1765          | 0.8189    | 0.8134 | 0.8161 | 0.6894 | 0.9663   | 0.8976            | 0.9509           |
| 0.0353        | 2.18  | 360  | 0.1900          | 0.8097    | 0.8130 | 0.8113 | 0.6826 | 0.9652   | 0.8968            | 0.9495           |
| 0.0269        | 2.24  | 370  | 0.2080          | 0.8338    | 0.7953 | 0.8141 | 0.6865 | 0.9666   | 0.8896            | 0.9508           |
| 0.0333        | 2.3   | 380  | 0.2032          | 0.7753    | 0.8341 | 0.8036 | 0.6717 | 0.9625   | 0.9048            | 0.9466           |
| 0.0339        | 2.36  | 390  | 0.1867          | 0.8309    | 0.8045 | 0.8175 | 0.6913 | 0.9670   | 0.8939            | 0.9520           |
| 0.035         | 2.42  | 400  | 0.1826          | 0.8078    | 0.8213 | 0.8145 | 0.6870 | 0.9656   | 0.9007            | 0.9500           |
| 0.039         | 2.48  | 410  | 0.2028          | 0.7762    | 0.8335 | 0.8038 | 0.6720 | 0.9626   | 0.9046            | 0.9466           |
| 0.0303        | 2.55  | 420  | 0.1964          | 0.8096    | 0.8153 | 0.8124 | 0.6841 | 0.9654   | 0.8979            | 0.9495           |
| 0.0296        | 2.61  | 430  | 0.1908          | 0.7883    | 0.8349 | 0.8109 | 0.6820 | 0.9642   | 0.9061            | 0.9485           |
| 0.0356        | 2.67  | 440  | 0.2016          | 0.8151    | 0.8140 | 0.8145 | 0.6871 | 0.9659   | 0.8977            | 0.9497           |
| 0.0343        | 2.73  | 450  | 0.1963          | 0.8016    | 0.8248 | 0.8130 | 0.6850 | 0.9651   | 0.9021            | 0.9497           |
| 0.0271        | 2.79  | 460  | 0.2077          | 0.8172    | 0.8127 | 0.8150 | 0.6877 | 0.9661   | 0.8972            | 0.9500           |
| 0.0311        | 2.85  | 470  | 0.1889          | 0.8080    | 0.8254 | 0.8166 | 0.6900 | 0.9659   | 0.9027            | 0.9512           |
| 0.029         | 2.91  | 480  | 0.1995          | 0.7698    | 0.8443 | 0.8053 | 0.6741 | 0.9625   | 0.9094            | 0.9469           |
| 0.0265        | 2.97  | 490  | 0.1828          | 0.8245    | 0.8148 | 0.8196 | 0.6944 | 0.9670   | 0.8986            | 0.9528           |
| 0.0281        | 3.03  | 500  | 0.2061          | 0.8321    | 0.8070 | 0.8194 | 0.6940 | 0.9673   | 0.8953            | 0.9520           |
| 0.0273        | 3.09  | 510  | 0.2072          | 0.8105    | 0.8218 | 0.8161 | 0.6894 | 0.9659   | 0.9012            | 0.9502           |
| 0.0268        | 3.15  | 520  | 0.2113          | 0.8084    | 0.8222 | 0.8152 | 0.6881 | 0.9657   | 0.9012            | 0.9502           |
| 0.0241        | 3.21  | 530  | 0.2015          | 0.8318    | 0.8038 | 0.8176 | 0.6914 | 0.9670   | 0.8937            | 0.9524           |
| 0.0198        | 3.27  | 540  | 0.2252          | 0.7922    | 0.8331 | 0.8122 | 0.6837 | 0.9646   | 0.9055            | 0.9483           |
| 0.0268        | 3.33  | 550  | 0.2107          | 0.7931    | 0.8343 | 0.8132 | 0.6852 | 0.9647   | 0.9061            | 0.9493           |
| 0.0185        | 3.39  | 560  | 0.2202          | 0.7874    | 0.8311 | 0.8086 | 0.6787 | 0.9638   | 0.9042            | 0.9485           |
| 0.0224        | 3.45  | 570  | 0.2256          | 0.8057    | 0.8247 | 0.8151 | 0.6879 | 0.9656   | 0.9023            | 0.9497           |
| 0.0189        | 3.52  | 580  | 0.2125          | 0.8111    | 0.8204 | 0.8157 | 0.6888 | 0.9659   | 0.9005            | 0.9504           |
| 0.026         | 3.58  | 590  | 0.2163          | 0.8122    | 0.8182 | 0.8152 | 0.6881 | 0.9659   | 0.8995            | 0.9506           |
| 0.0184        | 3.64  | 600  | 0.2143          | 0.8057    | 0.8204 | 0.8130 | 0.6849 | 0.9653   | 0.9002            | 0.9502           |
| 0.0196        | 3.7   | 610  | 0.2113          | 0.8171    | 0.8164 | 0.8167 | 0.6903 | 0.9663   | 0.8990            | 0.9509           |
| 0.0205        | 3.76  | 620  | 0.2081          | 0.8127    | 0.8213 | 0.8170 | 0.6906 | 0.9662   | 0.9011            | 0.9512           |
| 0.0231        | 3.82  | 630  | 0.2200          | 0.8170    | 0.8225 | 0.8198 | 0.6946 | 0.9667   | 0.9019            | 0.9508           |
| 0.0209        | 3.88  | 640  | 0.2179          | 0.8148    | 0.8261 | 0.8204 | 0.6955 | 0.9667   | 0.9035            | 0.9512           |
| 0.0164        | 3.94  | 650  | 0.2201          | 0.8338    | 0.8124 | 0.8229 | 0.6992 | 0.9679   | 0.8980            | 0.9522           |
| 0.0222        | 4.0   | 660  | 0.2174          | 0.8193    | 0.8124 | 0.8158 | 0.6890 | 0.9663   | 0.8971            | 0.9505           |
| 0.0209        | 4.06  | 670  | 0.2169          | 0.7975    | 0.8336 | 0.8151 | 0.6880 | 0.9652   | 0.9061            | 0.9502           |
| 0.0165        | 4.12  | 680  | 0.2248          | 0.7973    | 0.8317 | 0.8141 | 0.6865 | 0.9651   | 0.9052            | 0.9494           |
| 0.0136        | 4.18  | 690  | 0.2254          | 0.8073    | 0.8245 | 0.8158 | 0.6889 | 0.9658   | 0.9023            | 0.9501           |
| 0.016         | 4.24  | 700  | 0.2259          | 0.8029    | 0.8231 | 0.8129 | 0.6847 | 0.9651   | 0.9013            | 0.9499           |
| 0.018         | 4.3   | 710  | 0.2291          | 0.8013    | 0.8264 | 0.8136 | 0.6858 | 0.9652   | 0.9028            | 0.9496           |
| 0.0148        | 4.36  | 720  | 0.2316          | 0.7923    | 0.8283 | 0.8099 | 0.6806 | 0.9642   | 0.9031            | 0.9483           |
| 0.0163        | 4.42  | 730  | 0.2423          | 0.7882    | 0.8321 | 0.8096 | 0.6801 | 0.9640   | 0.9047            | 0.9475           |
| 0.0162        | 4.48  | 740  | 0.2312          | 0.8042    | 0.8243 | 0.8141 | 0.6865 | 0.9654   | 0.9020            | 0.9496           |
| 0.0121        | 4.55  | 750  | 0.2355          | 0.8003    | 0.8257 | 0.8128 | 0.6847 | 0.9650   | 0.9024            | 0.9494           |
| 0.0182        | 4.61  | 760  | 0.2393          | 0.7911    | 0.8313 | 0.8107 | 0.6817 | 0.9643   | 0.9046            | 0.9485           |
| 0.0182        | 4.67  | 770  | 0.2292          | 0.7954    | 0.8308 | 0.8127 | 0.6845 | 0.9648   | 0.9046            | 0.9494           |
| 0.0153        | 4.73  | 780  | 0.2312          | 0.8043    | 0.8266 | 0.8153 | 0.6882 | 0.9656   | 0.9031            | 0.9498           |
| 0.0182        | 4.79  | 790  | 0.2410          | 0.7953    | 0.8326 | 0.8135 | 0.6857 | 0.9649   | 0.9055            | 0.9489           |
| 0.0133        | 4.85  | 800  | 0.2350          | 0.8110    | 0.8219 | 0.8164 | 0.6898 | 0.9660   | 0.9013            | 0.9505           |
| 0.0185        | 4.91  | 810  | 0.2432          | 0.7912    | 0.8363 | 0.8132 | 0.6851 | 0.9647   | 0.9070            | 0.9486           |
| 0.0157        | 4.97  | 820  | 0.2318          | 0.8103    | 0.8214 | 0.8158 | 0.6889 | 0.9659   | 0.9010            | 0.9503           |
| 0.0171        | 5.03  | 830  | 0.2392          | 0.7992    | 0.8294 | 0.8140 | 0.6864 | 0.9651   | 0.9042            | 0.9492           |
| 0.0121        | 5.09  | 840  | 0.2422          | 0.8043    | 0.8271 | 0.8155 | 0.6885 | 0.9656   | 0.9034            | 0.9497           |
| 0.0103        | 5.15  | 850  | 0.2382          | 0.8009    | 0.8296 | 0.8150 | 0.6877 | 0.9654   | 0.9043            | 0.9495           |
| 0.0148        | 5.21  | 860  | 0.2358          | 0.8057    | 0.8256 | 0.8155 | 0.6885 | 0.9656   | 0.9027            | 0.9501           |
| 0.0115        | 5.27  | 870  | 0.2398          | 0.8008    | 0.8290 | 0.8147 | 0.6873 | 0.9653   | 0.9041            | 0.9497           |
| 0.0115        | 5.33  | 880  | 0.2385          | 0.8035    | 0.8245 | 0.8138 | 0.6861 | 0.9653   | 0.9020            | 0.9496           |
| 0.0122        | 5.39  | 890  | 0.2387          | 0.7983    | 0.8303 | 0.8140 | 0.6863 | 0.9651   | 0.9045            | 0.9494           |
| 0.0134        | 5.45  | 900  | 0.2395          | 0.8009    | 0.8279 | 0.8142 | 0.6866 | 0.9652   | 0.9035            | 0.9495           |
| 0.0169        | 5.52  | 910  | 0.2391          | 0.8012    | 0.8282 | 0.8145 | 0.6870 | 0.9653   | 0.9037            | 0.9496           |
| 0.0178        | 5.58  | 920  | 0.2403          | 0.7997    | 0.8290 | 0.8141 | 0.6865 | 0.9652   | 0.9040            | 0.9493           |
| 0.0162        | 5.64  | 930  | 0.2391          | 0.8017    | 0.8274 | 0.8143 | 0.6868 | 0.9653   | 0.9033            | 0.9496           |
| 0.0115        | 5.7   | 940  | 0.2384          | 0.8035    | 0.8265 | 0.8148 | 0.6875 | 0.9655   | 0.9030            | 0.9498           |
| 0.0175        | 5.76  | 950  | 0.2386          | 0.8029    | 0.8282 | 0.8153 | 0.6882 | 0.9655   | 0.9038            | 0.9498           |
| 0.0165        | 5.82  | 960  | 0.2390          | 0.8017    | 0.8288 | 0.8150 | 0.6878 | 0.9654   | 0.9040            | 0.9497           |
| 0.0186        | 5.88  | 970  | 0.2389          | 0.8021    | 0.8289 | 0.8153 | 0.6882 | 0.9655   | 0.9041            | 0.9498           |
| 0.0124        | 5.94  | 980  | 0.2390          | 0.8024    | 0.8288 | 0.8154 | 0.6883 | 0.9655   | 0.9041            | 0.9498           |
| 0.0138        | 6.0   | 990  | 0.2391          | 0.8025    | 0.8289 | 0.8155 | 0.6885 | 0.9655   | 0.9041            | 0.9498           |
| 0.0113        | 6.06  | 1000 | 0.2391          | 0.8025    | 0.8289 | 0.8155 | 0.6885 | 0.9655   | 0.9041            | 0.9498           |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1