File size: 2,217 Bytes
0a21076 1965285 0a21076 1965285 0a21076 1965285 0a21076 1965285 0a21076 1965285 0a21076 7a7a24c 0a21076 7a7a24c 1965285 0a21076 1965285 7a7a24c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- gn
license: apache-2.0
base_model: glob-asr/wav2vec2-large-xls-r-300m-guarani-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Common Voice 16
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16
type: mozilla-foundation/common_voice_16_1
config: gn
split: None
args: gn
metrics:
- name: Wer
type: wer
value: 49.766822118587605
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Common Voice 16
This model is a fine-tuned version of [glob-asr/wav2vec2-large-xls-r-300m-guarani-small](https://huggingface.co/glob-asr/wav2vec2-large-xls-r-300m-guarani-small) on the Common Voice 16 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3513
- Wer: 49.7668
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.4171 | 1.0152 | 100 | 0.3798 | 55.2965 |
| 0.3376 | 2.0305 | 200 | 0.3628 | 53.8974 |
| 0.294 | 3.0457 | 300 | 0.3528 | 52.4983 |
| 0.2632 | 4.0609 | 400 | 0.3484 | 49.7668 |
| 0.2459 | 5.0761 | 500 | 0.3513 | 49.7668 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|