--- language: - gn license: apache-2.0 base_model: glob-asr/wav2vec2-large-xls-r-300m-guarani-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Common Voice 16 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16 type: mozilla-foundation/common_voice_16_1 config: gn split: None args: gn metrics: - name: Wer type: wer value: 49.766822118587605 --- # Common Voice 16 This model is a fine-tuned version of [glob-asr/wav2vec2-large-xls-r-300m-guarani-small](https://huggingface.co/glob-asr/wav2vec2-large-xls-r-300m-guarani-small) on the Common Voice 16 dataset. It achieves the following results on the evaluation set: - Loss: 0.3513 - Wer: 49.7668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4171 | 1.0152 | 100 | 0.3798 | 55.2965 | | 0.3376 | 2.0305 | 200 | 0.3628 | 53.8974 | | 0.294 | 3.0457 | 300 | 0.3528 | 52.4983 | | 0.2632 | 4.0609 | 400 | 0.3484 | 49.7668 | | 0.2459 | 5.0761 | 500 | 0.3513 | 49.7668 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1