--- base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base datasets: [] language: - ca library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4173 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'Queixa: Deixar constància de la vostra disconformitat per un mal servei (un tracte inapropiat, un temps d''espera excessiu, etc.), sense demanar cap indemnització.' sentences: - Quin és el format de sortida del tràmit de baixa de la llicència de gual? - Quin és el tipus de venda que es realitza en els mercats setmanals? - Quin és el paper de la queixa en la resolució de conflictes? - source_sentence: L'empleat que en l'exercici de les seves tasques tingui assignada la funció de conducció de vehicles municipals, pot sol·licitar un ajut per les despeses ocasionades per a la renovació del carnet de conduir (certificat mèdic i administratiu). sentences: - Quin és el resultat esperat de les escoles que reben les subvencions? - Quin és el requisit per obtenir una autorització d'estacionament? - Quin és el requisit per a sol·licitar l'ajut social? - source_sentence: Aportació de documentació. Subvencions per finançar despeses d'hipoteca, subministrament i altres serveis i la manca d'ingressos de lloguer de les entitats culturals sentences: - Quin és el propòsit de la documentació? - Quin és el paper del públic assistent en el Ple Municipal? - Quin és el paper de l'ajuntament en la renovació del carnet de persona cuidadora? - source_sentence: la Fira de la Vila del Llibre de Sitges consistent en un conjunt de parades instal·lades al Passeig Marítim sentences: - Quin és el paper de la llicència de parcel·lació en la construcció d'edificacions? - Quin és l'objectiu del tràmit de participació en processos de selecció de personal de l'Ajuntament? - Quin és el lloc on es desenvolupa la Fira de la Vila del Llibre de Sitges? - source_sentence: Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat recreativa de caràcter extraordinari... sentences: - Quin és el paper de la persona interessada en la llicència per a espectacles públics o activitats recreatives de caràcter extraordinari? - Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció Oficial en la gestió d'habitatges? - Quin és el tipus de familiars que es tenen en compte per l'ajut especial? model-index: - name: BGE SITGES CAT results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.07327586206896551 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.15732758620689655 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.21767241379310345 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.39439655172413796 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.07327586206896551 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.05244252873563218 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.043534482758620686 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03943965517241379 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.07327586206896551 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.15732758620689655 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.21767241379310345 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.39439655172413796 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.20125893142070614 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.14385604816639316 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.17098930660026063 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.07327586206896551 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.15086206896551724 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.21767241379310345 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.39439655172413796 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.07327586206896551 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.050287356321839075 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04353448275862069 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03943965517241379 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.07327586206896551 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.15086206896551724 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.21767241379310345 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.39439655172413796 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2016207682773376 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.14438799945265474 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1715919733142084 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.07327586206896551 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.14870689655172414 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.21120689655172414 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.40086206896551724 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.07327586206896551 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.04956896551724138 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04224137931034483 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04008620689655173 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.07327586206896551 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.14870689655172414 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.21120689655172414 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.40086206896551724 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2021149795452301 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1433856732348113 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.16973847535400444 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.06896551724137931 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.14655172413793102 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.21767241379310345 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.38146551724137934 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.06896551724137931 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.048850574712643674 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04353448275862069 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03814655172413793 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.06896551724137931 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.14655172413793102 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.21767241379310345 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.38146551724137934 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.19535554125135882 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1398416119321293 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.16597320243564267 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.05603448275862069 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.13793103448275862 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.1939655172413793 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.36853448275862066 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.05603448275862069 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.04597701149425287 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03879310344827586 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03685344827586207 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.05603448275862069 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.13793103448275862 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.1939655172413793 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.36853448275862066 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.18225870966588442 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.12688492063492074 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.15425908300208627 name: Cosine Map@100 --- # BGE SITGES CAT This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** ca - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/SITGES-aina4_moreseq") # Run inference sentences = [ "Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat recreativa de caràcter extraordinari...", 'Quin és el paper de la persona interessada en la llicència per a espectacles públics o activitats recreatives de caràcter extraordinari?', "Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció Oficial en la gestió d'habitatges?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.0733 | | cosine_accuracy@3 | 0.1573 | | cosine_accuracy@5 | 0.2177 | | cosine_accuracy@10 | 0.3944 | | cosine_precision@1 | 0.0733 | | cosine_precision@3 | 0.0524 | | cosine_precision@5 | 0.0435 | | cosine_precision@10 | 0.0394 | | cosine_recall@1 | 0.0733 | | cosine_recall@3 | 0.1573 | | cosine_recall@5 | 0.2177 | | cosine_recall@10 | 0.3944 | | cosine_ndcg@10 | 0.2013 | | cosine_mrr@10 | 0.1439 | | **cosine_map@100** | **0.171** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0733 | | cosine_accuracy@3 | 0.1509 | | cosine_accuracy@5 | 0.2177 | | cosine_accuracy@10 | 0.3944 | | cosine_precision@1 | 0.0733 | | cosine_precision@3 | 0.0503 | | cosine_precision@5 | 0.0435 | | cosine_precision@10 | 0.0394 | | cosine_recall@1 | 0.0733 | | cosine_recall@3 | 0.1509 | | cosine_recall@5 | 0.2177 | | cosine_recall@10 | 0.3944 | | cosine_ndcg@10 | 0.2016 | | cosine_mrr@10 | 0.1444 | | **cosine_map@100** | **0.1716** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0733 | | cosine_accuracy@3 | 0.1487 | | cosine_accuracy@5 | 0.2112 | | cosine_accuracy@10 | 0.4009 | | cosine_precision@1 | 0.0733 | | cosine_precision@3 | 0.0496 | | cosine_precision@5 | 0.0422 | | cosine_precision@10 | 0.0401 | | cosine_recall@1 | 0.0733 | | cosine_recall@3 | 0.1487 | | cosine_recall@5 | 0.2112 | | cosine_recall@10 | 0.4009 | | cosine_ndcg@10 | 0.2021 | | cosine_mrr@10 | 0.1434 | | **cosine_map@100** | **0.1697** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.069 | | cosine_accuracy@3 | 0.1466 | | cosine_accuracy@5 | 0.2177 | | cosine_accuracy@10 | 0.3815 | | cosine_precision@1 | 0.069 | | cosine_precision@3 | 0.0489 | | cosine_precision@5 | 0.0435 | | cosine_precision@10 | 0.0381 | | cosine_recall@1 | 0.069 | | cosine_recall@3 | 0.1466 | | cosine_recall@5 | 0.2177 | | cosine_recall@10 | 0.3815 | | cosine_ndcg@10 | 0.1954 | | cosine_mrr@10 | 0.1398 | | **cosine_map@100** | **0.166** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.056 | | cosine_accuracy@3 | 0.1379 | | cosine_accuracy@5 | 0.194 | | cosine_accuracy@10 | 0.3685 | | cosine_precision@1 | 0.056 | | cosine_precision@3 | 0.046 | | cosine_precision@5 | 0.0388 | | cosine_precision@10 | 0.0369 | | cosine_recall@1 | 0.056 | | cosine_recall@3 | 0.1379 | | cosine_recall@5 | 0.194 | | cosine_recall@10 | 0.3685 | | cosine_ndcg@10 | 0.1823 | | cosine_mrr@10 | 0.1269 | | **cosine_map@100** | **0.1543** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 6 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 6 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.3065 | 5 | 3.3947 | - | - | - | - | - | - | | 0.6130 | 10 | 2.6401 | - | - | - | - | - | - | | 0.9195 | 15 | 2.0152 | - | - | - | - | - | - | | 0.9808 | 16 | - | 1.3404 | 0.1639 | 0.1577 | 0.1694 | 0.1503 | 0.1638 | | 1.2261 | 20 | 1.4542 | - | - | - | - | - | - | | 1.5326 | 25 | 1.0135 | - | - | - | - | - | - | | 1.8391 | 30 | 0.8437 | - | - | - | - | - | - | | 1.9617 | 32 | - | 0.9436 | 0.1556 | 0.1596 | 0.1600 | 0.1467 | 0.1701 | | 2.1456 | 35 | 0.7676 | - | - | - | - | - | - | | 2.4521 | 40 | 0.5126 | - | - | - | - | - | - | | 2.7586 | 45 | 0.4358 | - | - | - | - | - | - | | 2.9425 | 48 | - | 0.7852 | 0.1650 | 0.1693 | 0.1720 | 0.1511 | 0.1686 | | 3.0651 | 50 | 0.4192 | - | - | - | - | - | - | | 3.3716 | 55 | 0.3429 | - | - | - | - | - | - | | 3.6782 | 60 | 0.3025 | - | - | - | - | - | - | | 3.9847 | 65 | 0.2863 | 0.7401 | 0.1646 | 0.1706 | 0.1759 | 0.1480 | 0.1694 | | 4.2912 | 70 | 0.2474 | - | - | - | - | - | - | | 4.5977 | 75 | 0.2324 | - | - | - | - | - | - | | 4.9042 | 80 | 0.2344 | - | - | - | - | - | - | | 4.9655 | 81 | - | 0.7217 | 0.1663 | 0.1699 | 0.1767 | 0.1512 | 0.1696 | | 5.2107 | 85 | 0.2181 | - | - | - | - | - | - | | 5.5172 | 90 | 0.2116 | - | - | - | - | - | - | | 5.8238 | 95 | 0.1926 | - | - | - | - | - | - | | **5.8851** | **96** | **-** | **0.7154** | **0.166** | **0.1697** | **0.1716** | **0.1543** | **0.171** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```