File size: 29,439 Bytes
6db5f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
---
base_model: PlanTL-GOB-ES/roberta-base-bne
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: L'Ajuntament de Sitges ofereix a aquelles famílies que acompleixin
els requisits establerts, ajuts per al pagament de la quota del servei i de la
quota del menjador dels infants matriculats a les Llars d'Infants Municipals (
0-3 anys).
sentences:
- Quin és l'objectiu principal de les subvencions per a projectes i activitats de
l'àmbit turístic?
- Quin és el procediment per a obtenir una llicència per a disposar d'una parada
en un mercat setmanal?
- Quin és el paper de l'Ajuntament de Sitges en la quota del menjador de les Llars
d'Infants Municipals?
- source_sentence: Es tracta de la sol·licitud de permís municipal per poder utilitzar
de forma privativa una zona de la via pública per instal·lacions d’atraccions
i venda en fires, amb independència de les possibles afectacions a la via pública...
sentences:
- Quin és el tipus de permís que es sol·licita?
- Quin és el paper de l'Ajuntament en aquest tràmit?
- Quin és el resultat de la llicència per a la constitució d'un règim de propietat
horitzontal en relació amb l’escriptura de divisió horitzontal?
- source_sentence: Totes les persones que resideixen a Espanya estan obligades a inscriure's
en el padró del municipi en el qual resideixen habitualment.
sentences:
- Quin és el benefici de l'ajut extraordinari per a la família de l'empleat?
- Què passa si no es presenta la sol·licitud d'acceptació en el termini establert?
- Qui està obligat a inscriure's en el Padró Municipal d'Habitants?
- source_sentence: Les persones i entitats beneficiaries hauran de justificar la realització
del projecte/activitat subvencionada com a màxim el dia 31 de març de 2023.
sentences:
- Quin és el termini per presentar la justificació de la realització del projecte/activitat
subvencionada?
- Quin és el període durant el qual es poden sol·licitar els ajuts?
- Quin és el registre on s'inscriuen les entitats d’interès ciutadà de Sitges?
- source_sentence: Els establiments locals tenen un paper clau en el projecte de la
targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials
als consumidors que utilitzen la targeta.
sentences:
- Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?
- Quin és el paper de la via pública en aquest tràmit?
- Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen
en l'ajuda?
model-index:
- name: SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.05172413793103448
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.1875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3857758620689655
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.05172413793103448
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.041666666666666664
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.037500000000000006
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.038577586206896546
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.05172413793103448
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3857758620689655
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18210165785971896
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.12195368089764656
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.14624173028144724
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.04525862068965517
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.11422413793103449
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.1810344827586207
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38146551724137934
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04525862068965517
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.038074712643678156
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03620689655172414
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03814655172413794
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04525862068965517
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.11422413793103449
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1810344827586207
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38146551724137934
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17527880528414544
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1144422208538589
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1390144478189839
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.04741379310344827
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.12284482758620689
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20043103448275862
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.39870689655172414
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04741379310344827
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.040948275862068964
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04008620689655173
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03987068965517242
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04741379310344827
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.12284482758620689
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20043103448275862
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.39870689655172414
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18506006244346174
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.12174072933771223
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1456718436547049
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.04525862068965517
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.11637931034482758
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.16810344827586207
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38146551724137934
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04525862068965517
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03879310344827586
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03362068965517242
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03814655172413794
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04525862068965517
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.11637931034482758
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.16810344827586207
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38146551724137934
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17534824322616613
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11455682129173515
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.139297198421225
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.03879310344827586
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.09698275862068965
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.15301724137931033
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.34698275862068967
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.03879310344827586
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03232758620689655
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.030603448275862068
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.034698275862068965
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03879310344827586
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09698275862068965
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.15301724137931033
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.34698275862068967
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1568993526090112
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10108699370552827
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1268371950835345
name: Cosine Map@100
---
# SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) <!-- at revision 0e598176534f3cf2e30105f8286cf2503d6e4731 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv3-sp")
# Run inference
sentences = [
'Els establiments locals tenen un paper clau en el projecte de la targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials als consumidors que utilitzen la targeta.',
'Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?',
"Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen en l'ajuda?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0517 |
| cosine_accuracy@3 | 0.125 |
| cosine_accuracy@5 | 0.1875 |
| cosine_accuracy@10 | 0.3858 |
| cosine_precision@1 | 0.0517 |
| cosine_precision@3 | 0.0417 |
| cosine_precision@5 | 0.0375 |
| cosine_precision@10 | 0.0386 |
| cosine_recall@1 | 0.0517 |
| cosine_recall@3 | 0.125 |
| cosine_recall@5 | 0.1875 |
| cosine_recall@10 | 0.3858 |
| cosine_ndcg@10 | 0.1821 |
| cosine_mrr@10 | 0.122 |
| **cosine_map@100** | **0.1462** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.0453 |
| cosine_accuracy@3 | 0.1142 |
| cosine_accuracy@5 | 0.181 |
| cosine_accuracy@10 | 0.3815 |
| cosine_precision@1 | 0.0453 |
| cosine_precision@3 | 0.0381 |
| cosine_precision@5 | 0.0362 |
| cosine_precision@10 | 0.0381 |
| cosine_recall@1 | 0.0453 |
| cosine_recall@3 | 0.1142 |
| cosine_recall@5 | 0.181 |
| cosine_recall@10 | 0.3815 |
| cosine_ndcg@10 | 0.1753 |
| cosine_mrr@10 | 0.1144 |
| **cosine_map@100** | **0.139** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0474 |
| cosine_accuracy@3 | 0.1228 |
| cosine_accuracy@5 | 0.2004 |
| cosine_accuracy@10 | 0.3987 |
| cosine_precision@1 | 0.0474 |
| cosine_precision@3 | 0.0409 |
| cosine_precision@5 | 0.0401 |
| cosine_precision@10 | 0.0399 |
| cosine_recall@1 | 0.0474 |
| cosine_recall@3 | 0.1228 |
| cosine_recall@5 | 0.2004 |
| cosine_recall@10 | 0.3987 |
| cosine_ndcg@10 | 0.1851 |
| cosine_mrr@10 | 0.1217 |
| **cosine_map@100** | **0.1457** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0453 |
| cosine_accuracy@3 | 0.1164 |
| cosine_accuracy@5 | 0.1681 |
| cosine_accuracy@10 | 0.3815 |
| cosine_precision@1 | 0.0453 |
| cosine_precision@3 | 0.0388 |
| cosine_precision@5 | 0.0336 |
| cosine_precision@10 | 0.0381 |
| cosine_recall@1 | 0.0453 |
| cosine_recall@3 | 0.1164 |
| cosine_recall@5 | 0.1681 |
| cosine_recall@10 | 0.3815 |
| cosine_ndcg@10 | 0.1753 |
| cosine_mrr@10 | 0.1146 |
| **cosine_map@100** | **0.1393** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0388 |
| cosine_accuracy@3 | 0.097 |
| cosine_accuracy@5 | 0.153 |
| cosine_accuracy@10 | 0.347 |
| cosine_precision@1 | 0.0388 |
| cosine_precision@3 | 0.0323 |
| cosine_precision@5 | 0.0306 |
| cosine_precision@10 | 0.0347 |
| cosine_recall@1 | 0.0388 |
| cosine_recall@3 | 0.097 |
| cosine_recall@5 | 0.153 |
| cosine_recall@10 | 0.347 |
| cosine_ndcg@10 | 0.1569 |
| cosine_mrr@10 | 0.1011 |
| **cosine_map@100** | **0.1268** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,173 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 60.84 tokens</li><li>max: 206 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.34 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
| <code>L'objectiu principal de la persona coordinadora de colònia felina és garantir el benestar dels animals de la colònia.</code> | <code>Quin és l'objectiu principal de la persona coordinadora de colònia felina?</code> |
| <code>Es tracta d'una sala amb capacitat per a 125 persones, equipada amb un petit escenari, sistema de sonorització, pantalla per a projeccions, camerins i serveis higiènics (WC).</code> | <code>Quin és el nombre de persones que pot acollir la sala d'actes del Casal Municipal de la Gent Gran de Sitges?</code> |
| <code>Aquest ajut pretén fomentar l’associacionisme empresarial local, per tal de disposar d’agrupacions, gremis o associacions representatives de l’activitat empresarial del municipi.</code> | <code>Quin és el paper de les empreses en aquest ajut?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.6130 | 10 | 10.8464 | - | - | - | - | - |
| 0.9808 | 16 | - | 0.1060 | 0.1088 | 0.1067 | 0.0984 | 0.1074 |
| 1.2261 | 20 | 3.5261 | - | - | - | - | - |
| 1.8391 | 30 | 1.4363 | - | - | - | - | - |
| 1.9617 | 32 | - | 0.1406 | 0.1468 | 0.1356 | 0.1395 | 0.1373 |
| 2.4521 | 40 | 0.5627 | - | - | - | - | - |
| 2.9425 | 48 | - | 0.1377 | 0.1418 | 0.1427 | 0.1322 | 0.1437 |
| 3.0651 | 50 | 0.2727 | - | - | - | - | - |
| 3.6782 | 60 | 0.1297 | - | - | - | - | - |
| **3.9234** | **64** | **-** | **0.1393** | **0.1457** | **0.139** | **0.1268** | **0.1462** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |