File size: 33,433 Bytes
c3bcd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
---
base_model: PlanTL-GOB-ES/roberta-base-bne
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: L'Ajuntament de Sitges ofereix a aquelles famílies que acompleixin
    els requisits establerts, ajuts per al pagament de la quota del servei i de la
    quota del menjador dels infants matriculats a les Llars d'Infants Municipals (
    0-3 anys).
  sentences:
  - Quin és l'objectiu principal de les subvencions per a projectes i activitats de
    l'àmbit turístic?
  - Quin és el procediment per a obtenir una llicència per a disposar d'una parada
    en un mercat setmanal?
  - Quin és el paper de l'Ajuntament de Sitges en la quota del menjador de les Llars
    d'Infants Municipals?
- source_sentence: Es tracta de la sol·licitud de permís municipal per poder utilitzar
    de forma privativa una zona de la via pública per instal·lacions d’atraccions
    i venda en fires, amb independència de les possibles afectacions a la via pública...
  sentences:
  - Quin és el tipus de permís que es sol·licita?
  - Quin és el paper de l'Ajuntament en aquest tràmit?
  - Quin és el resultat de la llicència per a la constitució d'un règim de propietat
    horitzontal en relació amb l’escriptura de divisió horitzontal?
- source_sentence: Totes les persones que resideixen a Espanya estan obligades a inscriure's
    en el padró del municipi en el qual resideixen habitualment.
  sentences:
  - Quin és el benefici de l'ajut extraordinari per a la família de l'empleat?
  - Què passa si no es presenta la sol·licitud d'acceptació en el termini establert?
  - Qui està obligat a inscriure's en el Padró Municipal d'Habitants?
- source_sentence: Les persones i entitats beneficiaries hauran de justificar la realització
    del projecte/activitat subvencionada com a màxim el dia 31 de març de 2023.
  sentences:
  - Quin és el termini per presentar la justificació de la realització del projecte/activitat
    subvencionada?
  - Quin és el període durant el qual es poden sol·licitar els ajuts?
  - Quin és el registre on s'inscriuen les entitats d’interès ciutadà de Sitges?
- source_sentence: Els establiments locals tenen un paper clau en el projecte de la
    targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials
    als consumidors que utilitzen la targeta.
  sentences:
  - Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?
  - Quin és el paper de la via pública en aquest tràmit?
  - Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen
    en l'ajuda?
model-index:
- name: SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.05603448275862069
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.125
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.21336206896551724
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.40948275862068967
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05603448275862069
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.041666666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04267241379310346
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.040948275862068964
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05603448275862069
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.125
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.21336206896551724
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.40948275862068967
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19394246727908016
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1301253762999455
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15541893353957212
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.05172413793103448
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.12284482758620689
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.20043103448275862
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4073275862068966
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05172413793103448
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.040948275862068964
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04008620689655173
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04073275862068965
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05172413793103448
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.12284482758620689
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.20043103448275862
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4073275862068966
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19075313852531367
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1267044677066231
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15217462615525276
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.05818965517241379
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1206896551724138
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.20689655172413793
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.41594827586206895
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05818965517241379
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.04022988505747126
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.041379310344827586
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04159482758620689
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05818965517241379
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1206896551724138
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.20689655172413793
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.41594827586206895
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19717072550930018
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.13257902298850593
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.1580145716033785
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.05603448275862069
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.11853448275862069
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.1939655172413793
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4202586206896552
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05603448275862069
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.039511494252873564
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.03879310344827587
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04202586206896552
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05603448275862069
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11853448275862069
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.1939655172413793
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4202586206896552
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19482639723718284
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1286176108374386
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15326245290189994
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.05172413793103448
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1336206896551724
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.20905172413793102
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.39439655172413796
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05172413793103448
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.044540229885057465
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04181034482758621
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.03943965517241379
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05172413793103448
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1336206896551724
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.20905172413793102
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.39439655172413796
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.188263246156266
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.12684814586754262
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15277153038949104
      name: Cosine Map@100
---

# SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) <!-- at revision 0e598176534f3cf2e30105f8286cf2503d6e4731 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv4-sp")
# Run inference
sentences = [
    'Els establiments locals tenen un paper clau en el projecte de la targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials als consumidors que utilitzen la targeta.',
    'Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?',
    "Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen en l'ajuda?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.056      |
| cosine_accuracy@3   | 0.125      |
| cosine_accuracy@5   | 0.2134     |
| cosine_accuracy@10  | 0.4095     |
| cosine_precision@1  | 0.056      |
| cosine_precision@3  | 0.0417     |
| cosine_precision@5  | 0.0427     |
| cosine_precision@10 | 0.0409     |
| cosine_recall@1     | 0.056      |
| cosine_recall@3     | 0.125      |
| cosine_recall@5     | 0.2134     |
| cosine_recall@10    | 0.4095     |
| cosine_ndcg@10      | 0.1939     |
| cosine_mrr@10       | 0.1301     |
| **cosine_map@100**  | **0.1554** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0517     |
| cosine_accuracy@3   | 0.1228     |
| cosine_accuracy@5   | 0.2004     |
| cosine_accuracy@10  | 0.4073     |
| cosine_precision@1  | 0.0517     |
| cosine_precision@3  | 0.0409     |
| cosine_precision@5  | 0.0401     |
| cosine_precision@10 | 0.0407     |
| cosine_recall@1     | 0.0517     |
| cosine_recall@3     | 0.1228     |
| cosine_recall@5     | 0.2004     |
| cosine_recall@10    | 0.4073     |
| cosine_ndcg@10      | 0.1908     |
| cosine_mrr@10       | 0.1267     |
| **cosine_map@100**  | **0.1522** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.0582    |
| cosine_accuracy@3   | 0.1207    |
| cosine_accuracy@5   | 0.2069    |
| cosine_accuracy@10  | 0.4159    |
| cosine_precision@1  | 0.0582    |
| cosine_precision@3  | 0.0402    |
| cosine_precision@5  | 0.0414    |
| cosine_precision@10 | 0.0416    |
| cosine_recall@1     | 0.0582    |
| cosine_recall@3     | 0.1207    |
| cosine_recall@5     | 0.2069    |
| cosine_recall@10    | 0.4159    |
| cosine_ndcg@10      | 0.1972    |
| cosine_mrr@10       | 0.1326    |
| **cosine_map@100**  | **0.158** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.056      |
| cosine_accuracy@3   | 0.1185     |
| cosine_accuracy@5   | 0.194      |
| cosine_accuracy@10  | 0.4203     |
| cosine_precision@1  | 0.056      |
| cosine_precision@3  | 0.0395     |
| cosine_precision@5  | 0.0388     |
| cosine_precision@10 | 0.042      |
| cosine_recall@1     | 0.056      |
| cosine_recall@3     | 0.1185     |
| cosine_recall@5     | 0.194      |
| cosine_recall@10    | 0.4203     |
| cosine_ndcg@10      | 0.1948     |
| cosine_mrr@10       | 0.1286     |
| **cosine_map@100**  | **0.1533** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0517     |
| cosine_accuracy@3   | 0.1336     |
| cosine_accuracy@5   | 0.2091     |
| cosine_accuracy@10  | 0.3944     |
| cosine_precision@1  | 0.0517     |
| cosine_precision@3  | 0.0445     |
| cosine_precision@5  | 0.0418     |
| cosine_precision@10 | 0.0394     |
| cosine_recall@1     | 0.0517     |
| cosine_recall@3     | 0.1336     |
| cosine_recall@5     | 0.2091     |
| cosine_recall@10    | 0.3944     |
| cosine_ndcg@10      | 0.1883     |
| cosine_mrr@10       | 0.1268     |
| **cosine_map@100**  | **0.1528** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,173 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                             |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 60.84 tokens</li><li>max: 206 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 25.34 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                        | anchor                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
  | <code>L'objectiu principal de la persona coordinadora de colònia felina és garantir el benestar dels animals de la colònia.</code>                                                              | <code>Quin és l'objectiu principal de la persona coordinadora de colònia felina?</code>                                   |
  | <code>Es tracta d'una sala amb capacitat per a 125 persones, equipada amb un petit escenari, sistema de sonorització, pantalla per a projeccions, camerins i serveis higiènics (WC).</code>     | <code>Quin és el nombre de persones que pot acollir la sala d'actes del Casal Municipal de la Gent Gran de Sitges?</code> |
  | <code>Aquest ajut pretén fomentar l’associacionisme empresarial local, per tal de disposar d’agrupacions, gremis o associacions representatives de l’activitat empresarial del municipi.</code> | <code>Quin és el paper de les empreses en aquest ajut?</code>                                                             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.6130     | 10      | 10.8464       | -                      | -                      | -                      | -                     | -                      |
| 0.9808     | 16      | -             | 0.1060                 | 0.1088                 | 0.1067                 | 0.0984                | 0.1074                 |
| 1.2261     | 20      | 3.5261        | -                      | -                      | -                      | -                     | -                      |
| 1.8391     | 30      | 1.4363        | -                      | -                      | -                      | -                     | -                      |
| 1.9617     | 32      | -             | 0.1406                 | 0.1468                 | 0.1356                 | 0.1395                | 0.1373                 |
| 2.4521     | 40      | 0.5627        | -                      | -                      | -                      | -                     | -                      |
| 2.9425     | 48      | -             | 0.1377                 | 0.1418                 | 0.1427                 | 0.1322                | 0.1437                 |
| 3.0651     | 50      | 0.2727        | -                      | -                      | -                      | -                     | -                      |
| 3.6782     | 60      | 0.1297        | -                      | -                      | -                      | -                     | -                      |
| 3.9234     | 64      | -             | 0.1393                 | 0.1457                 | 0.1390                 | 0.1268                | 0.1462                 |
| 0.6130     | 10      | 0.096         | -                      | -                      | -                      | -                     | -                      |
| 0.9808     | 16      | -             | 0.1458                 | 0.1414                 | 0.1443                 | 0.1369                | 0.1407                 |
| 1.2261     | 20      | 0.1118        | -                      | -                      | -                      | -                     | -                      |
| 1.8391     | 30      | 0.1335        | -                      | -                      | -                      | -                     | -                      |
| 1.9617     | 32      | -             | 0.1486                 | 0.1476                 | 0.1419                 | 0.1489                | 0.1503                 |
| 2.4521     | 40      | 0.0765        | -                      | -                      | -                      | -                     | -                      |
| 2.9425     | 48      | -             | 0.1501                 | 0.1459                 | 0.1424                 | 0.1413                | 0.1437                 |
| 3.0651     | 50      | 0.1449        | -                      | -                      | -                      | -                     | -                      |
| 3.6782     | 60      | 0.0954        | -                      | -                      | -                      | -                     | -                      |
| 3.9847     | 65      | -             | 0.1562                 | 0.1559                 | 0.1517                 | 0.1409                | 0.1553                 |
| 4.2912     | 70      | 0.0786        | -                      | -                      | -                      | -                     | -                      |
| 4.9042     | 80      | 0.0973        | -                      | -                      | -                      | -                     | -                      |
| 4.9655     | 81      | -             | 0.1433                 | 0.1397                 | 0.1459                 | 0.1430                | 0.1457                 |
| 5.5172     | 90      | 0.0334        | -                      | -                      | -                      | -                     | -                      |
| 5.9464     | 97      | -             | 0.1499                 | 0.1482                 | 0.1478                 | 0.1466                | 0.1503                 |
| 6.1303     | 100     | 0.0278        | -                      | -                      | -                      | -                     | -                      |
| 6.7433     | 110     | 0.0223        | -                      | -                      | -                      | -                     | -                      |
| 6.9885     | 114     | -             | 0.1561                 | 0.1532                 | 0.1509                 | 0.1519                | 0.1547                 |
| 7.3563     | 120     | 0.0137        | -                      | -                      | -                      | -                     | -                      |
| 7.9693     | 130     | 0.0129        | 0.1525                 | 0.1557                 | 0.1505                 | 0.1570                | 0.1570                 |
| 8.5824     | 140     | 0.0052        | -                      | -                      | -                      | -                     | -                      |
| **8.9502** | **146** | **-**         | **0.1525**             | **0.1586**             | **0.1493**             | **0.1569**            | **0.1553**             |
| 9.1954     | 150     | 0.0044        | -                      | -                      | -                      | -                     | -                      |
| 9.8084     | 160     | 0.0064        | 0.1533                 | 0.1580                 | 0.1522                 | 0.1528                | 0.1554                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->