File size: 34,685 Bytes
3597a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
---
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: L'Espai d'escalada és una instal·lació municipal en forma de túnel
a una sala interior, amb una llargada de 10m, una amplada de 4,6m i una alçada
de 4m.
sentences:
- Quin és el registre on es comprova la inscripció dels estrangers amb ciutadania
de l'Espai Econòmic Europeu?
- On es pot trobar les bases generals de les convocatòries de selecció de personal
de l'Ajuntament?
- Quina és la llargada de l'Espai d'Escalada?
- source_sentence: Les activitats s’organitzen per setmanes.
sentences:
- Quin és el format en què es desenvolupen les activitats de l'Estiu Jove?
- Quin és el paper del subjecte passiu en la gestió de pagaments?
- Quin és el benefici de les subvencions?
- source_sentence: Les Estades Esportives cerquen que els infants aprenguin a relacionar-se
i a compartir mitjançant l'esport, experiències i vivències amb d'altres infants
amb qui no estan en contacte durant la resta de l'any.
sentences:
- Quin és el propòsit de l'ajut per a la creació de noves empreses?
- Quin és el propòsit de la llicència de parcel·lació?
- Quin és el benefici principal de les Estades Esportives?
- source_sentence: Declaració tributària mitjançant la qual es sol·licita la baixa
d'una activitat de la Taxa pel servei municipal complementari de recollida, tractament
i eliminació de residus comercials.
sentences:
- Quin és el format de la Declaració de baixa?
- Quin és el resultat de justificar una sol·licitud de canvi a les estades esportives?
- Quin és el període de celebració de la Fira d'Art de Sitges?
- source_sentence: Les entitats inscrites en el Registre resten obligades a comunicar
a l’Ajuntament qualsevol modificació en les seves dades registrals, podent sol·licitar
la seva cancel·lació o comunicant la seva dissolució.
sentences:
- Quin és el procediment per cancel·lar la inscripció d'una entitat al Registre
municipal d'entitats?
- Quin és el propòsit de la quota del servei de les Llars d'Infants Municipals?
- Quin és el paper de les entitats de protecció dels animals en la gestió de les
colònies urbanes felines?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.08620689655172414
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21551724137931033
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3275862068965517
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5107758620689655
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08620689655172414
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07183908045977011
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06551724137931034
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05107758620689654
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08620689655172414
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21551724137931033
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3275862068965517
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5107758620689655
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26401643418499254
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1896731321839082
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2150866107809785
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.08405172413793104
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20905172413793102
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.31896551724137934
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08405172413793104
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.069683908045977
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06379310344827585
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08405172413793104
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20905172413793102
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31896551724137934
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2594763687925116
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.18673713738368922
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21319033477988852
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.08620689655172414
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21120689655172414
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32112068965517243
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5129310344827587
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08620689655172414
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07040229885057471
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06422413793103447
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.051293103448275854
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08620689655172414
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21120689655172414
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32112068965517243
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5129310344827587
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2646539120704089
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1899279898741108
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21554766038692458
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.08189655172413793
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20474137931034483
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30603448275862066
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5043103448275862
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08189655172413793
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0682471264367816
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.061206896551724135
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05043103448275862
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08189655172413793
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20474137931034483
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30603448275862066
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5043103448275862
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25554093803691474
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1807856116584566
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20657861277416045
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.08405172413793104
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.20043103448275862
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3146551724137931
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49137931034482757
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08405172413793104
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0668103448275862
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06293103448275862
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04913793103448275
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08405172413793104
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.20043103448275862
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3146551724137931
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49137931034482757
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2516576518560222
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1794651409414343
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20584710715396837
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.07974137931034483
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2025862068965517
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3017241379310345
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4956896551724138
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07974137931034483
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06752873563218391
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0603448275862069
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04956896551724138
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07974137931034483
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2025862068965517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3017241379310345
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4956896551724138
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2527082338557514
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17959085933223878
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2058214047481906
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitgrsBAAIbge-m3-290824")
# Run inference
sentences = [
'Les entitats inscrites en el Registre resten obligades a comunicar a l’Ajuntament qualsevol modificació en les seves dades registrals, podent sol·licitar la seva cancel·lació o comunicant la seva dissolució.',
"Quin és el procediment per cancel·lar la inscripció d'una entitat al Registre municipal d'entitats?",
'Quin és el paper de les entitats de protecció dels animals en la gestió de les colònies urbanes felines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0862 |
| cosine_accuracy@3 | 0.2155 |
| cosine_accuracy@5 | 0.3276 |
| cosine_accuracy@10 | 0.5108 |
| cosine_precision@1 | 0.0862 |
| cosine_precision@3 | 0.0718 |
| cosine_precision@5 | 0.0655 |
| cosine_precision@10 | 0.0511 |
| cosine_recall@1 | 0.0862 |
| cosine_recall@3 | 0.2155 |
| cosine_recall@5 | 0.3276 |
| cosine_recall@10 | 0.5108 |
| cosine_ndcg@10 | 0.264 |
| cosine_mrr@10 | 0.1897 |
| **cosine_map@100** | **0.2151** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0841 |
| cosine_accuracy@3 | 0.2091 |
| cosine_accuracy@5 | 0.319 |
| cosine_accuracy@10 | 0.5 |
| cosine_precision@1 | 0.0841 |
| cosine_precision@3 | 0.0697 |
| cosine_precision@5 | 0.0638 |
| cosine_precision@10 | 0.05 |
| cosine_recall@1 | 0.0841 |
| cosine_recall@3 | 0.2091 |
| cosine_recall@5 | 0.319 |
| cosine_recall@10 | 0.5 |
| cosine_ndcg@10 | 0.2595 |
| cosine_mrr@10 | 0.1867 |
| **cosine_map@100** | **0.2132** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0862 |
| cosine_accuracy@3 | 0.2112 |
| cosine_accuracy@5 | 0.3211 |
| cosine_accuracy@10 | 0.5129 |
| cosine_precision@1 | 0.0862 |
| cosine_precision@3 | 0.0704 |
| cosine_precision@5 | 0.0642 |
| cosine_precision@10 | 0.0513 |
| cosine_recall@1 | 0.0862 |
| cosine_recall@3 | 0.2112 |
| cosine_recall@5 | 0.3211 |
| cosine_recall@10 | 0.5129 |
| cosine_ndcg@10 | 0.2647 |
| cosine_mrr@10 | 0.1899 |
| **cosine_map@100** | **0.2155** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0819 |
| cosine_accuracy@3 | 0.2047 |
| cosine_accuracy@5 | 0.306 |
| cosine_accuracy@10 | 0.5043 |
| cosine_precision@1 | 0.0819 |
| cosine_precision@3 | 0.0682 |
| cosine_precision@5 | 0.0612 |
| cosine_precision@10 | 0.0504 |
| cosine_recall@1 | 0.0819 |
| cosine_recall@3 | 0.2047 |
| cosine_recall@5 | 0.306 |
| cosine_recall@10 | 0.5043 |
| cosine_ndcg@10 | 0.2555 |
| cosine_mrr@10 | 0.1808 |
| **cosine_map@100** | **0.2066** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0841 |
| cosine_accuracy@3 | 0.2004 |
| cosine_accuracy@5 | 0.3147 |
| cosine_accuracy@10 | 0.4914 |
| cosine_precision@1 | 0.0841 |
| cosine_precision@3 | 0.0668 |
| cosine_precision@5 | 0.0629 |
| cosine_precision@10 | 0.0491 |
| cosine_recall@1 | 0.0841 |
| cosine_recall@3 | 0.2004 |
| cosine_recall@5 | 0.3147 |
| cosine_recall@10 | 0.4914 |
| cosine_ndcg@10 | 0.2517 |
| cosine_mrr@10 | 0.1795 |
| **cosine_map@100** | **0.2058** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0797 |
| cosine_accuracy@3 | 0.2026 |
| cosine_accuracy@5 | 0.3017 |
| cosine_accuracy@10 | 0.4957 |
| cosine_precision@1 | 0.0797 |
| cosine_precision@3 | 0.0675 |
| cosine_precision@5 | 0.0603 |
| cosine_precision@10 | 0.0496 |
| cosine_recall@1 | 0.0797 |
| cosine_recall@3 | 0.2026 |
| cosine_recall@5 | 0.3017 |
| cosine_recall@10 | 0.4957 |
| cosine_ndcg@10 | 0.2527 |
| cosine_mrr@10 | 0.1796 |
| **cosine_map@100** | **0.2058** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,173 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 48.75 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 21.07 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
| <code>Els ajuts per a la realització d'activitats en el lleure esportiu estan destinats a les entitats sense ànim de lucre que desenvolupen activitats esportives i de lleure.</code> | <code>Quins són els sectors que es beneficien dels ajuts?</code> |
| <code>En el certificat s'indiquen les dades de planejament vigent, classificació del sòl, qualificació urbanística, condicions de l’edificació i usos admesos referides a una finca o solar concreta.</code> | <code>Quin és el contingut de les condicions de l'edificació en el certificat d'aprofitament urbanístic?</code> |
| <code>Aportació de documentació. Ajuts per compensar la disminució d'ingressos de les empreses o establiments del sector de l'hosteleria i restauració afectats per les mesures adoptades per la situació de crisis provocada pel SARS-CoV2</code> | <code>Quin és el paper dels ajuts en la situació de crisis?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.6130 | 10 | 3.0594 | - | - | - | - | - | - |
| 0.9808 | 16 | - | 0.2047 | 0.1922 | 0.2020 | 0.2016 | 0.1774 | 0.2115 |
| 1.2261 | 20 | 1.525 | - | - | - | - | - | - |
| 1.8391 | 30 | 0.7434 | - | - | - | - | - | - |
| 1.9617 | 32 | - | 0.2186 | 0.2003 | 0.2102 | 0.2092 | 0.1870 | 0.2101 |
| 2.4521 | 40 | 0.4451 | - | - | - | - | - | - |
| 2.9425 | 48 | - | 0.2083 | 0.2054 | 0.2091 | 0.2118 | 0.2009 | 0.2140 |
| 3.0651 | 50 | 0.2518 | - | - | - | - | - | - |
| 3.6782 | 60 | 0.1801 | - | - | - | - | - | - |
| 3.9847 | 65 | - | 0.2135 | 0.2071 | 0.2037 | 0.2115 | 0.2030 | 0.2191 |
| 4.2912 | 70 | 0.1483 | - | - | - | - | - | - |
| 4.9042 | 80 | 0.0893 | - | - | - | - | - | - |
| 4.9655 | 81 | - | 0.2066 | 0.2053 | 0.2057 | 0.2137 | 0.1982 | 0.2176 |
| 5.5172 | 90 | 0.0748 | - | - | - | - | - | - |
| 5.9464 | 97 | - | 0.2171 | 0.2113 | 0.2086 | 0.2178 | 0.2120 | 0.2193 |
| 6.1303 | 100 | 0.064 | - | - | - | - | - | - |
| 6.7433 | 110 | 0.0458 | - | - | - | - | - | - |
| 6.9885 | 114 | - | 0.2294 | 0.2132 | 0.2151 | 0.2227 | 0.2054 | 0.2138 |
| 7.3563 | 120 | 0.0436 | - | - | - | - | - | - |
| 7.9693 | 130 | 0.0241 | 0.2133 | 0.2083 | 0.2096 | 0.2138 | 0.2080 | 0.2124 |
| 8.5824 | 140 | 0.021 | - | - | - | - | - | - |
| **8.9502** | **146** | **-** | **0.216** | **0.2074** | **0.2081** | **0.2162** | **0.2094** | **0.2177** |
| 9.1954 | 150 | 0.0237 | - | - | - | - | - | - |
| 9.8084 | 160 | 0.0145 | 0.2151 | 0.2058 | 0.2066 | 0.2155 | 0.2058 | 0.2132 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |