--- base_model: BEE-spoke-data/smol_llama-101M-midjourney-messages datasets: - pszemraj/midjourney-messages-cleaned inference: false license: apache-2.0 metrics: - accuracy model_creator: BEE-spoke-data model_name: smol_llama-101M-midjourney-messages pipeline_tag: text-generation quantized_by: afrideva tags: - generated_from_trainer - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 widget: - example_title: avocado chair text: avocado chair - example_title: potato text: A mysterious potato --- # BEE-spoke-data/smol_llama-101M-midjourney-messages-GGUF Quantized GGUF model files for [smol_llama-101M-midjourney-messages](https://huggingface.co/BEE-spoke-data/smol_llama-101M-midjourney-messages) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data) | Name | Quant method | Size | | ---- | ---- | ---- | | [smol_llama-101m-midjourney-messages.fp16.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.fp16.gguf) | fp16 | 203.28 MB | | [smol_llama-101m-midjourney-messages.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q2_k.gguf) | q2_k | 50.93 MB | | [smol_llama-101m-midjourney-messages.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q3_k_m.gguf) | q3_k_m | 57.06 MB | | [smol_llama-101m-midjourney-messages.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q4_k_m.gguf) | q4_k_m | 65.40 MB | | [smol_llama-101m-midjourney-messages.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q5_k_m.gguf) | q5_k_m | 74.34 MB | | [smol_llama-101m-midjourney-messages.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q6_k.gguf) | q6_k | 83.83 MB | | [smol_llama-101m-midjourney-messages.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-101M-midjourney-messages-GGUF/resolve/main/smol_llama-101m-midjourney-messages.q8_0.gguf) | q8_0 | 108.35 MB | ## Original Model Card: # smol_llama-101M-midjourney-messages Given a 'partial prompt' for a text2image model, this generates additional relevant text to include for a full prompt. ![example](https://i.imgur.com/f2hzgq1.png) ## Model description This model is a fine-tuned version of [BEE-spoke-data/smol_llama-101M-GQA](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA) on the `pszemraj/midjourney-messages-cleaned` dataset. It achieves the following results on the evaluation set: - Loss: 2.8431 - Accuracy: 0.4682 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17056 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0