update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: legalbert-large-1.7M-2_class_actions
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# legalbert-large-1.7M-2_class_actions
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [pile-of-law/legalbert-large-1.7M-2](https://huggingface.co/pile-of-law/legalbert-large-1.7M-2) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.6428
|
19 |
+
- Accuracy: 0.61
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 14
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
50 |
+
| No log | 1.0 | 150 | 0.6380 | 0.6333 |
|
51 |
+
| No log | 2.0 | 300 | 0.7457 | 0.55 |
|
52 |
+
| No log | 3.0 | 450 | 0.7066 | 0.45 |
|
53 |
+
| 0.6843 | 4.0 | 600 | 0.7218 | 0.6767 |
|
54 |
+
| 0.6843 | 5.0 | 750 | 0.6360 | 0.6067 |
|
55 |
+
| 0.6843 | 6.0 | 900 | 0.6502 | 0.6033 |
|
56 |
+
| 0.6751 | 7.0 | 1050 | 0.6664 | 0.6033 |
|
57 |
+
| 0.6751 | 8.0 | 1200 | 0.6490 | 0.6133 |
|
58 |
+
| 0.6751 | 9.0 | 1350 | 0.6506 | 0.6067 |
|
59 |
+
| 0.6781 | 10.0 | 1500 | 0.6486 | 0.61 |
|
60 |
+
| 0.6781 | 11.0 | 1650 | 0.6544 | 0.6167 |
|
61 |
+
| 0.6781 | 12.0 | 1800 | 0.6425 | 0.61 |
|
62 |
+
| 0.6781 | 13.0 | 1950 | 0.6417 | 0.61 |
|
63 |
+
| 0.6756 | 14.0 | 2100 | 0.6428 | 0.61 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.29.2
|
69 |
+
- Pytorch 2.0.1+cu118
|
70 |
+
- Datasets 2.12.0
|
71 |
+
- Tokenizers 0.13.3
|