Create run_inference.py
Browse files- run_inference.py +31 -0
run_inference.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft import AutoPeftModelForCausalLM
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import re
|
4 |
+
|
5 |
+
|
6 |
+
PROMPT = "YOUR PROMPT HERE"
|
7 |
+
MAX_LENGTH = 32768 # Do not change
|
8 |
+
DEVICE = "cuda"
|
9 |
+
|
10 |
+
|
11 |
+
model_id = "agarkovv/Ministral-8B-Instruct-2410-LoRA-trading"
|
12 |
+
base_model_id = "mistralai/Ministral-8B-Instruct-2410"
|
13 |
+
|
14 |
+
model = AutoPeftModelForCausalLM.from_pretrained(model_id)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
16 |
+
|
17 |
+
model = model.to(DEVICE)
|
18 |
+
model.eval()
|
19 |
+
inputs = tokenizer(
|
20 |
+
PROMPT, return_tensors="pt", padding=False, max_length=MAX_LENGTH, truncation=True
|
21 |
+
)
|
22 |
+
inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
23 |
+
|
24 |
+
res = model.generate(
|
25 |
+
**inputs,
|
26 |
+
use_cache=True,
|
27 |
+
max_new_tokens=MAX_LENGTH,
|
28 |
+
)
|
29 |
+
output = tokenizer.decode(res[0], skip_special_tokens=True)
|
30 |
+
answer = re.sub(r".*\[/INST\]\s*", "", output, flags=re.DOTALL)
|
31 |
+
print(answer)
|