nph4rd commited on
Commit
e73b064
·
verified ·
1 Parent(s): 2e651ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -2
README.md CHANGED
@@ -39,7 +39,7 @@ To start using this model, run the following:
39
  from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
40
 
41
  model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-waveui-896").eval()
42
- processor = AutoProcessor.from_pretrained(""google/paligemma-3b-pt-896"")
43
  ```
44
 
45
  ## Data
@@ -49,4 +49,13 @@ We used the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset f
49
 
50
  ## Evaluation
51
 
52
- We will release a full evaluation report soon. Stay tuned! :)
 
 
 
 
 
 
 
 
 
 
39
  from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
40
 
41
  model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-waveui-896").eval()
42
+ processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-896")
43
  ```
44
 
45
  ## Data
 
49
 
50
  ## Evaluation
51
 
52
+ We calculated the mean IoU over 1024 examples of the test set using 3 different closed-source models: Gemini Pro 1.5, Claude Sonnet 3.5 and GPT 4o. We also ran this same calculation using the PaliGemma WaveUI fine-tunes. We obtained the following values:
53
+
54
+ - Gemini 1.5: 0.12
55
+ - Claude: 0.05
56
+ - GPT: 0.05
57
+ - PaliGemma Widgetcap+WaveUI 448: 0.40
58
+ - **PaliGemma WaveUI 896: 0.49**
59
+
60
+
61
+