File size: 2,635 Bytes
6dcb75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125964e
6dcb75b
125964e
6dcb75b
 
 
338b316
6dcb75b
 
 
 
 
 
 
 
 
338b316
 
6dcb75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338b316
6dcb75b
 
 
338b316
 
6dcb75b
 
338b316
 
6dcb75b
 
 
 
 
338b316
 
 
 
 
 
 
 
 
 
 
 
6dcb75b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: Augmented-Final
      split: train
      args: Augmented-Final
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9753340184994861
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50

This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
- Accuracy: 0.9753

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0236        | 1.0   | 122  | 1.9878          | 0.1305   |
| 1.88          | 2.0   | 244  | 1.7957          | 0.2867   |
| 1.5421        | 3.0   | 366  | 1.3813          | 0.5149   |
| 0.9489        | 4.0   | 488  | 0.9015          | 0.7030   |
| 0.8734        | 5.0   | 610  | 0.6616          | 0.7667   |
| 0.6562        | 6.0   | 732  | 0.5095          | 0.8140   |
| 0.5788        | 7.0   | 854  | 0.4036          | 0.8520   |
| 0.6737        | 8.0   | 976  | 0.3157          | 0.8921   |
| 0.4687        | 9.0   | 1098 | 0.2146          | 0.9281   |
| 0.3775        | 10.0  | 1220 | 0.2020          | 0.9353   |
| 0.3226        | 11.0  | 1342 | 0.1549          | 0.9558   |
| 0.2452        | 12.0  | 1464 | 0.0909          | 0.9753   |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3