File size: 2,635 Bytes
6dcb75b 125964e 6dcb75b 125964e 6dcb75b 338b316 6dcb75b 338b316 6dcb75b 338b316 6dcb75b 338b316 6dcb75b 338b316 6dcb75b 338b316 6dcb75b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.9753340184994861
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
- Accuracy: 0.9753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0236 | 1.0 | 122 | 1.9878 | 0.1305 |
| 1.88 | 2.0 | 244 | 1.7957 | 0.2867 |
| 1.5421 | 3.0 | 366 | 1.3813 | 0.5149 |
| 0.9489 | 4.0 | 488 | 0.9015 | 0.7030 |
| 0.8734 | 5.0 | 610 | 0.6616 | 0.7667 |
| 0.6562 | 6.0 | 732 | 0.5095 | 0.8140 |
| 0.5788 | 7.0 | 854 | 0.4036 | 0.8520 |
| 0.6737 | 8.0 | 976 | 0.3157 | 0.8921 |
| 0.4687 | 9.0 | 1098 | 0.2146 | 0.9281 |
| 0.3775 | 10.0 | 1220 | 0.2020 | 0.9353 |
| 0.3226 | 11.0 | 1342 | 0.1549 | 0.9558 |
| 0.2452 | 12.0 | 1464 | 0.0909 | 0.9753 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|