This is the IndicBART model. For detailed documentation look here: https://indicnlp.ai4bharat.org/indic-bart/ and https://github.com/AI4Bharat/indic-bart/ Usage: from transformers import MBartForConditionalGeneration from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBARTTokenizer", do_lower_case=False, use_fast=False, keep_accents=True) model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART") # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence ". inp = tokenizer("I am a boy <\/s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> मैं एक लड़का हूँ <\/s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0]) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am a boy # What if we mask? inp = tokenizer("I am [MASK] <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=tokenizer.pad_token_id, decoder_start_token_id=tokenizer(["<2en>"], add_special_tokens=False).input_ids[0][0]) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am happy Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. The tokenizer repo is kept separate from the model repo because unlike mBART-25 and mBART-50 which use a BPE model (MBartTokenizer class) whereas we use the sentencepiece model (AlbertTokenizer class). 3. Currently, keeping the tokenizer and model files in the same repo complicates things so keeping them separate is a temporary solution. This will be fixed in future versions. 4. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration