Add modeling_indictrans.py
Browse files- modeling_indictrans.py +1267 -0
modeling_indictrans.py
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch IndicTrans model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from torch.nn import functional as F
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
Seq2SeqLMOutput,
|
31 |
+
Seq2SeqModelOutput,
|
32 |
+
)
|
33 |
+
|
34 |
+
from transformers.utils import logging
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
|
37 |
+
from configuration_indictrans import IndicTransConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CONFIG_FOR_DOC = "IndicTransConfig"
|
43 |
+
|
44 |
+
INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
45 |
+
|
46 |
+
|
47 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
48 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
49 |
+
"""
|
50 |
+
Shift input ids one token to the right.
|
51 |
+
"""
|
52 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
53 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
54 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
55 |
+
|
56 |
+
if pad_token_id is None:
|
57 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
58 |
+
# replace possible -100 values in labels by `pad_token_id`
|
59 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
60 |
+
|
61 |
+
return shifted_input_ids
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
65 |
+
def _make_causal_mask(
|
66 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
67 |
+
):
|
68 |
+
"""
|
69 |
+
Make causal mask used for bi-directional self-attention.
|
70 |
+
"""
|
71 |
+
bsz, tgt_len = input_ids_shape
|
72 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
73 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
74 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
75 |
+
mask = mask.to(dtype)
|
76 |
+
|
77 |
+
if past_key_values_length > 0:
|
78 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
79 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
83 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
84 |
+
"""
|
85 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
86 |
+
"""
|
87 |
+
bsz, src_len = mask.size()
|
88 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
89 |
+
|
90 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
91 |
+
|
92 |
+
inverted_mask = 1.0 - expanded_mask
|
93 |
+
|
94 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
95 |
+
|
96 |
+
|
97 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
98 |
+
"""
|
99 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
100 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
101 |
+
"""
|
102 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
103 |
+
mask = input_ids.ne(padding_idx).int()
|
104 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
105 |
+
return incremental_indices.long() + padding_idx
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding->IndicTrans
|
109 |
+
class IndicTransSinusoidalPositionalEmbedding(nn.Module):
|
110 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
111 |
+
|
112 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
113 |
+
super().__init__()
|
114 |
+
self.offset = 2
|
115 |
+
self.embedding_dim = embedding_dim
|
116 |
+
self.padding_idx = padding_idx
|
117 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
118 |
+
|
119 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
120 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
121 |
+
if hasattr(self, "weights"):
|
122 |
+
# in forward put the weights on the correct dtype and device of the param
|
123 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
124 |
+
|
125 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
126 |
+
|
127 |
+
@staticmethod
|
128 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
129 |
+
"""
|
130 |
+
Build sinusoidal embeddings.
|
131 |
+
|
132 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
133 |
+
"Attention Is All You Need".
|
134 |
+
"""
|
135 |
+
half_dim = embedding_dim // 2
|
136 |
+
emb = math.log(10000) / (half_dim - 1)
|
137 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
138 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
|
139 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
140 |
+
if embedding_dim % 2 == 1:
|
141 |
+
# zero pad
|
142 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
143 |
+
if padding_idx is not None:
|
144 |
+
emb[padding_idx, :] = 0
|
145 |
+
|
146 |
+
return emb.to(torch.get_default_dtype())
|
147 |
+
|
148 |
+
@torch.no_grad()
|
149 |
+
def forward(
|
150 |
+
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
|
151 |
+
):
|
152 |
+
if input_ids is not None:
|
153 |
+
bsz, seq_len = input_ids.size()
|
154 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
155 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
156 |
+
input_ids.device
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
bsz, seq_len = inputs_embeds.size()[:-1]
|
160 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
|
161 |
+
|
162 |
+
# expand embeddings if needed
|
163 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
164 |
+
if max_pos > self.weights.size(0):
|
165 |
+
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
166 |
+
|
167 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
168 |
+
|
169 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
|
170 |
+
"""
|
171 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
inputs_embeds: torch.Tensor
|
175 |
+
|
176 |
+
Returns: torch.Tensor
|
177 |
+
"""
|
178 |
+
input_shape = inputs_embeds.size()[:-1]
|
179 |
+
sequence_length = input_shape[1]
|
180 |
+
|
181 |
+
position_ids = torch.arange(
|
182 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
183 |
+
)
|
184 |
+
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
|
185 |
+
|
186 |
+
|
187 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->IndicTrans
|
188 |
+
class IndicTransAttention(nn.Module):
|
189 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
embed_dim: int,
|
194 |
+
num_heads: int,
|
195 |
+
dropout: float = 0.0,
|
196 |
+
is_decoder: bool = False,
|
197 |
+
bias: bool = True,
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
self.embed_dim = embed_dim
|
201 |
+
self.num_heads = num_heads
|
202 |
+
self.dropout = dropout
|
203 |
+
self.head_dim = embed_dim // num_heads
|
204 |
+
|
205 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
206 |
+
raise ValueError(
|
207 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
208 |
+
f" and `num_heads`: {num_heads})."
|
209 |
+
)
|
210 |
+
self.scaling = self.head_dim**-0.5
|
211 |
+
self.is_decoder = is_decoder
|
212 |
+
|
213 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
214 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
215 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
216 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
217 |
+
|
218 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
219 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
hidden_states: torch.Tensor,
|
224 |
+
key_value_states: Optional[torch.Tensor] = None,
|
225 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
226 |
+
attention_mask: Optional[torch.Tensor] = None,
|
227 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
228 |
+
output_attentions: bool = False,
|
229 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
230 |
+
"""Input shape: Batch x Time x Channel"""
|
231 |
+
|
232 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
233 |
+
# for the decoder
|
234 |
+
is_cross_attention = key_value_states is not None
|
235 |
+
|
236 |
+
bsz, tgt_len, _ = hidden_states.size()
|
237 |
+
|
238 |
+
# get query proj
|
239 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
240 |
+
# get key, value proj
|
241 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
242 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
243 |
+
# the provided `key_value_states` to support prefix tuning
|
244 |
+
if (
|
245 |
+
is_cross_attention
|
246 |
+
and past_key_value is not None
|
247 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
248 |
+
):
|
249 |
+
# reuse k,v, cross_attentions
|
250 |
+
key_states = past_key_value[0]
|
251 |
+
value_states = past_key_value[1]
|
252 |
+
elif is_cross_attention:
|
253 |
+
# cross_attentions
|
254 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
255 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
256 |
+
elif past_key_value is not None:
|
257 |
+
# reuse k, v, self_attention
|
258 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
259 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
260 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
261 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
262 |
+
else:
|
263 |
+
# self_attention
|
264 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
265 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
266 |
+
|
267 |
+
if self.is_decoder:
|
268 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
269 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
270 |
+
# key/value_states (first "if" case)
|
271 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
272 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
273 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
274 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
275 |
+
past_key_value = (key_states, value_states)
|
276 |
+
|
277 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
278 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
279 |
+
key_states = key_states.reshape(*proj_shape)
|
280 |
+
value_states = value_states.reshape(*proj_shape)
|
281 |
+
|
282 |
+
src_len = key_states.size(1)
|
283 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
284 |
+
|
285 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
286 |
+
raise ValueError(
|
287 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
288 |
+
f" {attn_weights.size()}"
|
289 |
+
)
|
290 |
+
|
291 |
+
if attention_mask is not None:
|
292 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
293 |
+
raise ValueError(
|
294 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
295 |
+
)
|
296 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
297 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
298 |
+
|
299 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
300 |
+
|
301 |
+
if layer_head_mask is not None:
|
302 |
+
if layer_head_mask.size() != (self.num_heads,):
|
303 |
+
raise ValueError(
|
304 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
305 |
+
f" {layer_head_mask.size()}"
|
306 |
+
)
|
307 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
308 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
309 |
+
|
310 |
+
if output_attentions:
|
311 |
+
# this operation is a bit awkward, but it's required to
|
312 |
+
# make sure that attn_weights keeps its gradient.
|
313 |
+
# In order to do so, attn_weights have to be reshaped
|
314 |
+
# twice and have to be reused in the following
|
315 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
316 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
317 |
+
else:
|
318 |
+
attn_weights_reshaped = None
|
319 |
+
|
320 |
+
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
|
321 |
+
|
322 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
323 |
+
|
324 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
325 |
+
raise ValueError(
|
326 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
327 |
+
f" {attn_output.size()}"
|
328 |
+
)
|
329 |
+
|
330 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
331 |
+
attn_output = attn_output.transpose(1, 2)
|
332 |
+
|
333 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
334 |
+
# partitioned across GPUs when using tensor-parallelism.
|
335 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
336 |
+
|
337 |
+
attn_output = self.out_proj(attn_output)
|
338 |
+
|
339 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
340 |
+
|
341 |
+
|
342 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
|
343 |
+
class IndicTransEncoderLayer(nn.Module):
|
344 |
+
def __init__(self, config: IndicTransConfig):
|
345 |
+
super().__init__()
|
346 |
+
self.embed_dim = config.encoder_embed_dim
|
347 |
+
self.self_attn = IndicTransAttention(
|
348 |
+
embed_dim=self.embed_dim,
|
349 |
+
num_heads=config.encoder_attention_heads,
|
350 |
+
dropout=config.attention_dropout,
|
351 |
+
)
|
352 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
353 |
+
self.dropout = config.dropout
|
354 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
355 |
+
self.activation_dropout = config.activation_dropout
|
356 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
357 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
358 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
359 |
+
self.normalize_before = config.encoder_normalize_before
|
360 |
+
|
361 |
+
def forward(
|
362 |
+
self,
|
363 |
+
hidden_states: torch.Tensor,
|
364 |
+
attention_mask: torch.Tensor,
|
365 |
+
layer_head_mask: torch.Tensor,
|
366 |
+
output_attentions: bool = False,
|
367 |
+
) -> torch.Tensor:
|
368 |
+
"""
|
369 |
+
Args:
|
370 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
371 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
372 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
373 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
374 |
+
`(encoder_attention_heads,)`.
|
375 |
+
output_attentions (`bool`, *optional*):
|
376 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
377 |
+
returned tensors for more detail.
|
378 |
+
"""
|
379 |
+
residual = hidden_states
|
380 |
+
if self.normalize_before:
|
381 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
382 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
383 |
+
hidden_states=hidden_states,
|
384 |
+
attention_mask=attention_mask,
|
385 |
+
layer_head_mask=layer_head_mask,
|
386 |
+
output_attentions=output_attentions,
|
387 |
+
)
|
388 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
389 |
+
hidden_states = residual + hidden_states
|
390 |
+
if not self.normalize_before:
|
391 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
392 |
+
|
393 |
+
residual = hidden_states
|
394 |
+
if self.normalize_before:
|
395 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
396 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
397 |
+
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
398 |
+
hidden_states = self.fc2(hidden_states)
|
399 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
400 |
+
hidden_states = residual + hidden_states
|
401 |
+
if not self.normalize_before:
|
402 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
403 |
+
|
404 |
+
if hidden_states.dtype == torch.float16 and (
|
405 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
406 |
+
):
|
407 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
408 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
409 |
+
|
410 |
+
outputs = (hidden_states,)
|
411 |
+
|
412 |
+
if output_attentions:
|
413 |
+
outputs += (attn_weights,)
|
414 |
+
|
415 |
+
return outputs
|
416 |
+
|
417 |
+
|
418 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->IndicTrans
|
419 |
+
class IndicTransDecoderLayer(nn.Module):
|
420 |
+
def __init__(self, config: IndicTransConfig):
|
421 |
+
super().__init__()
|
422 |
+
self.embed_dim = config.decoder_embed_dim
|
423 |
+
|
424 |
+
self.self_attn = IndicTransAttention(
|
425 |
+
embed_dim=self.embed_dim,
|
426 |
+
num_heads=config.decoder_attention_heads,
|
427 |
+
dropout=config.attention_dropout,
|
428 |
+
is_decoder=True,
|
429 |
+
)
|
430 |
+
self.dropout = config.dropout
|
431 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
432 |
+
self.activation_dropout = config.activation_dropout
|
433 |
+
|
434 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
435 |
+
self.encoder_attn = IndicTransAttention(
|
436 |
+
self.embed_dim,
|
437 |
+
config.decoder_attention_heads,
|
438 |
+
dropout=config.attention_dropout,
|
439 |
+
is_decoder=True,
|
440 |
+
)
|
441 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
442 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
443 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
444 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
445 |
+
self.normalize_before = config.decoder_normalize_before
|
446 |
+
|
447 |
+
def forward(
|
448 |
+
self,
|
449 |
+
hidden_states: torch.Tensor,
|
450 |
+
attention_mask: Optional[torch.Tensor] = None,
|
451 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
452 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
453 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
454 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
455 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
456 |
+
output_attentions: Optional[bool] = False,
|
457 |
+
use_cache: Optional[bool] = True,
|
458 |
+
) -> torch.Tensor:
|
459 |
+
"""
|
460 |
+
Args:
|
461 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
462 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
463 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
464 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
465 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
466 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
467 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
468 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
469 |
+
`(encoder_attention_heads,)`.
|
470 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
471 |
+
size `(decoder_attention_heads,)`.
|
472 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
473 |
+
output_attentions (`bool`, *optional*):
|
474 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
475 |
+
returned tensors for more detail.
|
476 |
+
"""
|
477 |
+
residual = hidden_states
|
478 |
+
if self.normalize_before:
|
479 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
480 |
+
|
481 |
+
# Self Attention
|
482 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
483 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
484 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
485 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
486 |
+
hidden_states=hidden_states,
|
487 |
+
past_key_value=self_attn_past_key_value,
|
488 |
+
attention_mask=attention_mask,
|
489 |
+
layer_head_mask=layer_head_mask,
|
490 |
+
output_attentions=output_attentions,
|
491 |
+
)
|
492 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
493 |
+
hidden_states = residual + hidden_states
|
494 |
+
if not self.normalize_before:
|
495 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
496 |
+
|
497 |
+
# Cross-Attention Block
|
498 |
+
cross_attn_present_key_value = None
|
499 |
+
cross_attn_weights = None
|
500 |
+
if encoder_hidden_states is not None:
|
501 |
+
residual = hidden_states
|
502 |
+
if self.normalize_before:
|
503 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
504 |
+
|
505 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
506 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
507 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
508 |
+
hidden_states=hidden_states,
|
509 |
+
key_value_states=encoder_hidden_states,
|
510 |
+
attention_mask=encoder_attention_mask,
|
511 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
512 |
+
past_key_value=cross_attn_past_key_value,
|
513 |
+
output_attentions=output_attentions,
|
514 |
+
)
|
515 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
516 |
+
hidden_states = residual + hidden_states
|
517 |
+
if not self.normalize_before:
|
518 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
519 |
+
|
520 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
521 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
522 |
+
|
523 |
+
# Fully Connected
|
524 |
+
residual = hidden_states
|
525 |
+
if self.normalize_before:
|
526 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
527 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
528 |
+
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
529 |
+
hidden_states = self.fc2(hidden_states)
|
530 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
531 |
+
hidden_states = residual + hidden_states
|
532 |
+
if not self.normalize_before:
|
533 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
534 |
+
|
535 |
+
outputs = (hidden_states,)
|
536 |
+
|
537 |
+
if output_attentions:
|
538 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
539 |
+
|
540 |
+
if use_cache:
|
541 |
+
outputs += (present_key_value,)
|
542 |
+
|
543 |
+
return outputs
|
544 |
+
|
545 |
+
|
546 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100PretrainedModel->IndicTrans
|
547 |
+
class IndicTransPreTrainedModel(PreTrainedModel):
|
548 |
+
config_class = IndicTransConfig
|
549 |
+
base_model_prefix = "model"
|
550 |
+
supports_gradient_checkpointing = True
|
551 |
+
_no_split_modules = ["IndicTransAttention"]
|
552 |
+
|
553 |
+
def _init_weights(self, module):
|
554 |
+
std = self.config.init_std
|
555 |
+
if isinstance(module, nn.Linear):
|
556 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
557 |
+
if module.bias is not None:
|
558 |
+
module.bias.data.zero_()
|
559 |
+
elif isinstance(module, nn.Embedding):
|
560 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
561 |
+
if module.padding_idx is not None:
|
562 |
+
module.weight.data[module.padding_idx].zero_()
|
563 |
+
|
564 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
565 |
+
if isinstance(module, (IndicTransDecoder, IndicTransEncoder)):
|
566 |
+
module.gradient_checkpointing = value
|
567 |
+
|
568 |
+
|
569 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100EncoderLayer->IndicTrans
|
570 |
+
class IndicTransEncoder(IndicTransPreTrainedModel):
|
571 |
+
"""
|
572 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
573 |
+
[`IndicTransEncoderLayer`].
|
574 |
+
|
575 |
+
Args:
|
576 |
+
config: IndicTransConfig
|
577 |
+
embed_tokens (nn.Embedding): output embedding
|
578 |
+
"""
|
579 |
+
|
580 |
+
def __init__(self, config: IndicTransConfig, embed_tokens: Optional[nn.Embedding] = None):
|
581 |
+
super().__init__(config)
|
582 |
+
|
583 |
+
self.dropout = config.dropout
|
584 |
+
self.layerdrop = config.encoder_layerdrop
|
585 |
+
|
586 |
+
embed_dim = config.encoder_embed_dim
|
587 |
+
self.padding_idx = config.pad_token_id
|
588 |
+
self.max_source_positions = config.max_source_positions
|
589 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
590 |
+
|
591 |
+
self.embed_tokens = nn.Embedding(config.encoder_vocab_size, embed_dim, self.padding_idx)
|
592 |
+
|
593 |
+
if embed_tokens is not None:
|
594 |
+
self.embed_tokens.weight = embed_tokens.weight
|
595 |
+
|
596 |
+
self.embed_positions = IndicTransSinusoidalPositionalEmbedding(
|
597 |
+
config.max_source_positions,
|
598 |
+
embed_dim,
|
599 |
+
self.padding_idx,
|
600 |
+
)
|
601 |
+
self.layers = nn.ModuleList([IndicTransEncoderLayer(config) for _ in range(config.encoder_layers)])
|
602 |
+
self.layer_norm = nn.LayerNorm(embed_dim) if config.encoder_normalize_before else None
|
603 |
+
self.layernorm_embedding = nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
604 |
+
|
605 |
+
self.gradient_checkpointing = False
|
606 |
+
# Initialize weights and apply final processing
|
607 |
+
self.post_init()
|
608 |
+
|
609 |
+
def forward(
|
610 |
+
self,
|
611 |
+
input_ids: Optional[torch.Tensor] = None,
|
612 |
+
attention_mask: Optional[torch.Tensor] = None,
|
613 |
+
head_mask: Optional[torch.Tensor] = None,
|
614 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
615 |
+
output_attentions: Optional[bool] = None,
|
616 |
+
output_hidden_states: Optional[bool] = None,
|
617 |
+
return_dict: Optional[bool] = None,
|
618 |
+
):
|
619 |
+
r"""
|
620 |
+
Args:
|
621 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
622 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
623 |
+
provide it.
|
624 |
+
|
625 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
626 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
627 |
+
|
628 |
+
[What are input IDs?](../glossary#input-ids)
|
629 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
630 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
631 |
+
|
632 |
+
- 1 for tokens that are **not masked**,
|
633 |
+
- 0 for tokens that are **masked**.
|
634 |
+
|
635 |
+
[What are attention masks?](../glossary#attention-mask)
|
636 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
637 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
638 |
+
|
639 |
+
- 1 indicates the head is **not masked**,
|
640 |
+
- 0 indicates the head is **masked**.
|
641 |
+
|
642 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
643 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
644 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
645 |
+
than the model's internal embedding lookup matrix.
|
646 |
+
output_attentions (`bool`, *optional*):
|
647 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
648 |
+
returned tensors for more detail.
|
649 |
+
output_hidden_states (`bool`, *optional*):
|
650 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
651 |
+
for more detail.
|
652 |
+
return_dict (`bool`, *optional*):
|
653 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
654 |
+
"""
|
655 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
656 |
+
output_hidden_states = (
|
657 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
658 |
+
)
|
659 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
660 |
+
|
661 |
+
# retrieve input_ids and inputs_embeds
|
662 |
+
if input_ids is not None and inputs_embeds is not None:
|
663 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
664 |
+
elif input_ids is not None:
|
665 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
666 |
+
input_shape = input_ids.size()
|
667 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
668 |
+
elif inputs_embeds is not None:
|
669 |
+
input_shape = inputs_embeds.size()[:-1]
|
670 |
+
else:
|
671 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
672 |
+
|
673 |
+
if inputs_embeds is None:
|
674 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
675 |
+
|
676 |
+
embed_pos = self.embed_positions(input_ids, inputs_embeds)
|
677 |
+
embed_pos = embed_pos.to(inputs_embeds.device)
|
678 |
+
|
679 |
+
hidden_states = inputs_embeds + embed_pos
|
680 |
+
if self.layernorm_embedding is not None:
|
681 |
+
x = self.layernorm_embedding(hidden_states)
|
682 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
683 |
+
|
684 |
+
# expand attention_mask
|
685 |
+
if attention_mask is not None:
|
686 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
687 |
+
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
688 |
+
|
689 |
+
encoder_states = () if output_hidden_states else None
|
690 |
+
all_attentions = () if output_attentions else None
|
691 |
+
|
692 |
+
# check if head_mask has a correct number of layers specified if desired
|
693 |
+
if head_mask is not None:
|
694 |
+
if head_mask.size()[0] != len(self.layers):
|
695 |
+
raise ValueError(
|
696 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
697 |
+
f" {head_mask.size()[0]}."
|
698 |
+
)
|
699 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
700 |
+
|
701 |
+
for idx, encoder_layer in enumerate(self.layers):
|
702 |
+
if output_hidden_states:
|
703 |
+
encoder_states = encoder_states + (hidden_states,)
|
704 |
+
|
705 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
706 |
+
dropout_probability = torch.rand([])
|
707 |
+
|
708 |
+
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
709 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
710 |
+
# under deepspeed zero3 all gpus must run in sync
|
711 |
+
|
712 |
+
if self.gradient_checkpointing and self.training:
|
713 |
+
# create gradient checkpointing function
|
714 |
+
def create_custom_forward(module):
|
715 |
+
def custom_forward(*inputs):
|
716 |
+
return module(*inputs, output_attentions)
|
717 |
+
|
718 |
+
return custom_forward
|
719 |
+
|
720 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
721 |
+
create_custom_forward(encoder_layer),
|
722 |
+
hidden_states,
|
723 |
+
attention_mask,
|
724 |
+
(head_mask[idx] if head_mask is not None else None),
|
725 |
+
)
|
726 |
+
else:
|
727 |
+
layer_outputs = encoder_layer(
|
728 |
+
hidden_states,
|
729 |
+
attention_mask,
|
730 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
731 |
+
output_attentions=output_attentions,
|
732 |
+
)
|
733 |
+
|
734 |
+
hidden_states = layer_outputs[0]
|
735 |
+
|
736 |
+
if skip_the_layer:
|
737 |
+
layer_outputs = (None, None)
|
738 |
+
|
739 |
+
if output_attentions:
|
740 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
741 |
+
|
742 |
+
if self.layer_norm is not None:
|
743 |
+
hidden_states = self.layer_norm(hidden_states)
|
744 |
+
|
745 |
+
if output_hidden_states:
|
746 |
+
encoder_states = encoder_states + (hidden_states,)
|
747 |
+
|
748 |
+
if not return_dict:
|
749 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
750 |
+
return BaseModelOutput(
|
751 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
752 |
+
)
|
753 |
+
|
754 |
+
|
755 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100DecoderLayer->IndicTrans
|
756 |
+
class IndicTransDecoder(IndicTransPreTrainedModel):
|
757 |
+
"""
|
758 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`IndicTransDecoderLayer`]
|
759 |
+
|
760 |
+
Args:
|
761 |
+
config: IndicTransConfig
|
762 |
+
embed_tokens (nn.Embedding): output embedding
|
763 |
+
"""
|
764 |
+
|
765 |
+
def __init__(self, config: IndicTransConfig, embed_tokens: Optional[nn.Embedding] = None):
|
766 |
+
super().__init__(config)
|
767 |
+
self.dropout = config.dropout
|
768 |
+
self.layerdrop = config.decoder_layerdrop
|
769 |
+
|
770 |
+
embed_dim = config.encoder_embed_dim
|
771 |
+
self.padding_idx = config.pad_token_id
|
772 |
+
self.max_target_positions = config.max_target_positions
|
773 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
774 |
+
|
775 |
+
self.embed_tokens = nn.Embedding(config.decoder_vocab_size, embed_dim, self.padding_idx)
|
776 |
+
|
777 |
+
if embed_tokens is not None:
|
778 |
+
self.embed_tokens.weight = embed_tokens.weight
|
779 |
+
|
780 |
+
self.embed_positions = IndicTransSinusoidalPositionalEmbedding(
|
781 |
+
config.max_target_positions,
|
782 |
+
embed_dim,
|
783 |
+
self.padding_idx,
|
784 |
+
)
|
785 |
+
self.layers = nn.ModuleList([IndicTransDecoderLayer(config) for _ in range(config.decoder_layers)])
|
786 |
+
self.layer_norm = nn.LayerNorm(embed_dim) if config.decoder_normalize_before else None
|
787 |
+
self.layernorm_embedding = nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
788 |
+
|
789 |
+
self.gradient_checkpointing = False
|
790 |
+
# Initialize weights and apply final processing
|
791 |
+
self.post_init()
|
792 |
+
|
793 |
+
def forward(
|
794 |
+
self,
|
795 |
+
input_ids: Optional[torch.Tensor] = None,
|
796 |
+
attention_mask: Optional[torch.Tensor] = None,
|
797 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
798 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
799 |
+
head_mask: Optional[torch.Tensor] = None,
|
800 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
801 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
802 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
803 |
+
use_cache: Optional[bool] = None,
|
804 |
+
output_attentions: Optional[bool] = None,
|
805 |
+
output_hidden_states: Optional[bool] = None,
|
806 |
+
return_dict: Optional[bool] = None,
|
807 |
+
):
|
808 |
+
r"""
|
809 |
+
Args:
|
810 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
811 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
812 |
+
provide it.
|
813 |
+
|
814 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
815 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
816 |
+
|
817 |
+
[What are input IDs?](../glossary#input-ids)
|
818 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
819 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
820 |
+
|
821 |
+
- 1 for tokens that are **not masked**,
|
822 |
+
- 0 for tokens that are **masked**.
|
823 |
+
|
824 |
+
[What are attention masks?](../glossary#attention-mask)
|
825 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
826 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
827 |
+
of the decoder.
|
828 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
829 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
830 |
+
selected in `[0, 1]`:
|
831 |
+
|
832 |
+
- 1 for tokens that are **not masked**,
|
833 |
+
- 0 for tokens that are **masked**.
|
834 |
+
|
835 |
+
[What are attention masks?](../glossary#attention-mask)
|
836 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
837 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
838 |
+
|
839 |
+
- 1 indicates the head is **not masked**,
|
840 |
+
- 0 indicates the head is **masked**.
|
841 |
+
|
842 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
843 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
844 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
845 |
+
|
846 |
+
- 1 indicates the head is **not masked**,
|
847 |
+
- 0 indicates the head is **masked**.
|
848 |
+
|
849 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
850 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
851 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
852 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
853 |
+
|
854 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
855 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
856 |
+
|
857 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
858 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
859 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
|
860 |
+
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
|
861 |
+
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
|
862 |
+
control over how to convert `input_ids` indices into associated vectors than the model's internal
|
863 |
+
embedding lookup matrix.
|
864 |
+
output_attentions (`bool`, *optional*):
|
865 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
866 |
+
returned tensors for more detail.
|
867 |
+
output_hidden_states (`bool`, *optional*):
|
868 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
869 |
+
for more detail.
|
870 |
+
return_dict (`bool`, *optional*):
|
871 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
872 |
+
"""
|
873 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
874 |
+
output_hidden_states = (
|
875 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
876 |
+
)
|
877 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
878 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
879 |
+
|
880 |
+
# retrieve input_ids and inputs_embeds
|
881 |
+
if input_ids is not None and inputs_embeds is not None:
|
882 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
883 |
+
elif input_ids is not None:
|
884 |
+
input_shape = input_ids.size()
|
885 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
886 |
+
elif inputs_embeds is not None:
|
887 |
+
input_shape = inputs_embeds.size()[:-1]
|
888 |
+
else:
|
889 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
890 |
+
|
891 |
+
# past_key_values_length
|
892 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
893 |
+
|
894 |
+
if inputs_embeds is None:
|
895 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
896 |
+
|
897 |
+
# create causal mask
|
898 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
899 |
+
combined_attention_mask = None
|
900 |
+
if input_shape[-1] > 1:
|
901 |
+
combined_attention_mask = _make_causal_mask(
|
902 |
+
input_shape,
|
903 |
+
inputs_embeds.dtype,
|
904 |
+
device=inputs_embeds.device,
|
905 |
+
past_key_values_length=past_key_values_length,
|
906 |
+
)
|
907 |
+
|
908 |
+
if attention_mask is not None and combined_attention_mask is not None:
|
909 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
910 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(
|
911 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
912 |
+
)
|
913 |
+
|
914 |
+
# expand encoder attention mask
|
915 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
916 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
917 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
918 |
+
|
919 |
+
# embed positions
|
920 |
+
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
|
921 |
+
positions = positions.to(inputs_embeds.device)
|
922 |
+
|
923 |
+
hidden_states = inputs_embeds + positions
|
924 |
+
if self.layernorm_embedding is not None:
|
925 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
926 |
+
|
927 |
+
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
928 |
+
|
929 |
+
if self.gradient_checkpointing and self.training:
|
930 |
+
if use_cache:
|
931 |
+
logger.warning_once(
|
932 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
|
933 |
+
)
|
934 |
+
use_cache = False
|
935 |
+
|
936 |
+
# decoder layers
|
937 |
+
all_hidden_states = () if output_hidden_states else None
|
938 |
+
all_self_attns = () if output_attentions else None
|
939 |
+
all_cross_attentions = () if output_attentions else None
|
940 |
+
next_decoder_cache = () if use_cache else None
|
941 |
+
|
942 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
943 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
944 |
+
if attn_mask is not None:
|
945 |
+
if attn_mask.size()[0] != len(self.layers):
|
946 |
+
raise ValueError(
|
947 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
948 |
+
f" {head_mask.size()[0]}."
|
949 |
+
)
|
950 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
951 |
+
|
952 |
+
for idx, decoder_layer in enumerate(self.layers):
|
953 |
+
if output_hidden_states:
|
954 |
+
all_hidden_states += (hidden_states,)
|
955 |
+
|
956 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
957 |
+
dropout_probability = torch.rand([])
|
958 |
+
|
959 |
+
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
960 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
961 |
+
# under deepspeed zero3 all gpus must run in sync
|
962 |
+
|
963 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
964 |
+
|
965 |
+
if self.gradient_checkpointing and self.training:
|
966 |
+
|
967 |
+
def create_custom_forward(module):
|
968 |
+
def custom_forward(*inputs):
|
969 |
+
# None for past_key_value
|
970 |
+
return module(*inputs, output_attentions, use_cache)
|
971 |
+
|
972 |
+
return custom_forward
|
973 |
+
|
974 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
975 |
+
create_custom_forward(decoder_layer),
|
976 |
+
hidden_states,
|
977 |
+
combined_attention_mask,
|
978 |
+
encoder_hidden_states,
|
979 |
+
encoder_attention_mask,
|
980 |
+
head_mask[idx] if head_mask is not None else None,
|
981 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
982 |
+
None,
|
983 |
+
)
|
984 |
+
else:
|
985 |
+
layer_outputs = decoder_layer(
|
986 |
+
hidden_states,
|
987 |
+
attention_mask=combined_attention_mask,
|
988 |
+
encoder_hidden_states=encoder_hidden_states,
|
989 |
+
encoder_attention_mask=encoder_attention_mask,
|
990 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
991 |
+
cross_attn_layer_head_mask=(
|
992 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
993 |
+
),
|
994 |
+
past_key_value=past_key_value,
|
995 |
+
output_attentions=output_attentions,
|
996 |
+
use_cache=use_cache,
|
997 |
+
)
|
998 |
+
|
999 |
+
hidden_states = layer_outputs[0]
|
1000 |
+
|
1001 |
+
if skip_the_layer:
|
1002 |
+
continue
|
1003 |
+
|
1004 |
+
if use_cache:
|
1005 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1006 |
+
|
1007 |
+
if output_attentions:
|
1008 |
+
all_self_attns += (layer_outputs[1],)
|
1009 |
+
all_cross_attentions += (layer_outputs[2],)
|
1010 |
+
|
1011 |
+
if self.layer_norm is not None:
|
1012 |
+
hidden_states = self.layer_norm(hidden_states)
|
1013 |
+
|
1014 |
+
# add hidden states from the last decoder layer
|
1015 |
+
if output_hidden_states:
|
1016 |
+
all_hidden_states += (hidden_states,)
|
1017 |
+
|
1018 |
+
next_cache = next_decoder_cache if use_cache else None
|
1019 |
+
if not return_dict:
|
1020 |
+
return tuple(
|
1021 |
+
v
|
1022 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1023 |
+
if v is not None
|
1024 |
+
)
|
1025 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1026 |
+
last_hidden_state=hidden_states,
|
1027 |
+
past_key_values=next_cache,
|
1028 |
+
hidden_states=all_hidden_states,
|
1029 |
+
attentions=all_self_attns,
|
1030 |
+
cross_attentions=all_cross_attentions,
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
|
1034 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100Model->IndicTrans
|
1035 |
+
class IndicTransModel(IndicTransPreTrainedModel):
|
1036 |
+
_tied_weights_keys = None
|
1037 |
+
|
1038 |
+
def __init__(self, config: IndicTransConfig):
|
1039 |
+
super().__init__(config)
|
1040 |
+
|
1041 |
+
self.encoder = IndicTransEncoder(config)
|
1042 |
+
self.decoder = IndicTransDecoder(config)
|
1043 |
+
|
1044 |
+
# Initialize weights and apply final processing
|
1045 |
+
self.post_init()
|
1046 |
+
|
1047 |
+
def get_encoder(self):
|
1048 |
+
return self.encoder
|
1049 |
+
|
1050 |
+
def get_decoder(self):
|
1051 |
+
return self.decoder
|
1052 |
+
|
1053 |
+
def forward(
|
1054 |
+
self,
|
1055 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1056 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1057 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1058 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1059 |
+
head_mask: Optional[torch.Tensor] = None,
|
1060 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1061 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1062 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1063 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1064 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1065 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1066 |
+
use_cache: Optional[bool] = None,
|
1067 |
+
output_attentions: Optional[bool] = None,
|
1068 |
+
output_hidden_states: Optional[bool] = None,
|
1069 |
+
return_dict: Optional[bool] = None,
|
1070 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
|
1071 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1072 |
+
output_hidden_states = (
|
1073 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1074 |
+
)
|
1075 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1076 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1077 |
+
|
1078 |
+
if encoder_outputs is None:
|
1079 |
+
encoder_outputs = self.encoder(
|
1080 |
+
input_ids=input_ids,
|
1081 |
+
attention_mask=attention_mask,
|
1082 |
+
head_mask=head_mask,
|
1083 |
+
inputs_embeds=inputs_embeds,
|
1084 |
+
output_attentions=output_attentions,
|
1085 |
+
output_hidden_states=output_hidden_states,
|
1086 |
+
return_dict=return_dict,
|
1087 |
+
)
|
1088 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1089 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1090 |
+
encoder_outputs = BaseModelOutput(
|
1091 |
+
last_hidden_state=encoder_outputs[0],
|
1092 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1093 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1097 |
+
decoder_outputs = self.decoder(
|
1098 |
+
input_ids=decoder_input_ids,
|
1099 |
+
attention_mask=decoder_attention_mask,
|
1100 |
+
encoder_hidden_states=encoder_outputs[0],
|
1101 |
+
encoder_attention_mask=attention_mask,
|
1102 |
+
head_mask=decoder_head_mask,
|
1103 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1104 |
+
past_key_values=past_key_values,
|
1105 |
+
inputs_embeds=decoder_inputs_embeds,
|
1106 |
+
use_cache=use_cache,
|
1107 |
+
output_attentions=output_attentions,
|
1108 |
+
output_hidden_states=output_hidden_states,
|
1109 |
+
return_dict=return_dict,
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
if not return_dict:
|
1113 |
+
return decoder_outputs + encoder_outputs
|
1114 |
+
|
1115 |
+
return Seq2SeqModelOutput(
|
1116 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1117 |
+
past_key_values=decoder_outputs.past_key_values,
|
1118 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1119 |
+
decoder_attentions=decoder_outputs.attentions,
|
1120 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1121 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1122 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1123 |
+
encoder_attentions=encoder_outputs.attentions,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
|
1127 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ForConditionalGeneration->IndicTrans
|
1128 |
+
class IndicTransForConditionalGeneration(IndicTransPreTrainedModel):
|
1129 |
+
base_model_prefix = "model"
|
1130 |
+
_tied_weights_keys = None
|
1131 |
+
|
1132 |
+
def __init__(self, config: IndicTransConfig):
|
1133 |
+
super().__init__(config)
|
1134 |
+
self.model = IndicTransModel(config)
|
1135 |
+
self.lm_head = nn.Linear(config.decoder_embed_dim, config.decoder_vocab_size, bias=False)
|
1136 |
+
|
1137 |
+
if config.share_decoder_input_output_embed:
|
1138 |
+
self.lm_head.weight = self.model.decoder.embed_tokens.weight
|
1139 |
+
|
1140 |
+
self.post_init()
|
1141 |
+
|
1142 |
+
def tie_weights(self):
|
1143 |
+
pass
|
1144 |
+
|
1145 |
+
def get_encoder(self):
|
1146 |
+
return self.model.get_encoder()
|
1147 |
+
|
1148 |
+
def get_decoder(self):
|
1149 |
+
return self.model.get_decoder()
|
1150 |
+
|
1151 |
+
def get_output_embeddings(self):
|
1152 |
+
return self.lm_head
|
1153 |
+
|
1154 |
+
def set_output_embeddings(self, new_embeddings):
|
1155 |
+
self.lm_head = new_embeddings
|
1156 |
+
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1161 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1162 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1163 |
+
head_mask: Optional[torch.Tensor] = None,
|
1164 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1165 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1166 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1167 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1168 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1169 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1170 |
+
labels: Optional[torch.LongTensor] = None,
|
1171 |
+
use_cache: Optional[bool] = None,
|
1172 |
+
output_attentions: Optional[bool] = None,
|
1173 |
+
output_hidden_states: Optional[bool] = None,
|
1174 |
+
return_dict: Optional[bool] = None,
|
1175 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
|
1176 |
+
r"""
|
1177 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1178 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1179 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1180 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1181 |
+
|
1182 |
+
Returns:
|
1183 |
+
"""
|
1184 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1185 |
+
|
1186 |
+
if labels is not None:
|
1187 |
+
if decoder_input_ids is None:
|
1188 |
+
decoder_input_ids = shift_tokens_right(
|
1189 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
outputs = self.model(
|
1193 |
+
input_ids,
|
1194 |
+
attention_mask=attention_mask,
|
1195 |
+
decoder_input_ids=decoder_input_ids,
|
1196 |
+
encoder_outputs=encoder_outputs,
|
1197 |
+
decoder_attention_mask=decoder_attention_mask,
|
1198 |
+
head_mask=head_mask,
|
1199 |
+
decoder_head_mask=decoder_head_mask,
|
1200 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1201 |
+
past_key_values=past_key_values,
|
1202 |
+
inputs_embeds=inputs_embeds,
|
1203 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1204 |
+
use_cache=use_cache,
|
1205 |
+
output_attentions=output_attentions,
|
1206 |
+
output_hidden_states=output_hidden_states,
|
1207 |
+
return_dict=return_dict,
|
1208 |
+
)
|
1209 |
+
lm_logits = self.lm_head(outputs[0])
|
1210 |
+
|
1211 |
+
masked_lm_loss = None
|
1212 |
+
if labels is not None:
|
1213 |
+
# move labels to the correct device to enable PP
|
1214 |
+
labels = labels.to(lm_logits.device)
|
1215 |
+
loss_fct = nn.CrossEntropyLoss()
|
1216 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1217 |
+
|
1218 |
+
if not return_dict:
|
1219 |
+
output = (lm_logits,) + outputs[1:]
|
1220 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1221 |
+
|
1222 |
+
return Seq2SeqLMOutput(
|
1223 |
+
loss=masked_lm_loss,
|
1224 |
+
logits=lm_logits,
|
1225 |
+
past_key_values=outputs.past_key_values,
|
1226 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1227 |
+
decoder_attentions=outputs.decoder_attentions,
|
1228 |
+
cross_attentions=outputs.cross_attentions,
|
1229 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1230 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1231 |
+
encoder_attentions=outputs.encoder_attentions,
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
def prepare_inputs_for_generation(
|
1235 |
+
self,
|
1236 |
+
decoder_input_ids,
|
1237 |
+
past_key_values=None,
|
1238 |
+
attention_mask=None,
|
1239 |
+
head_mask=None,
|
1240 |
+
decoder_head_mask=None,
|
1241 |
+
cross_attn_head_mask=None,
|
1242 |
+
use_cache=None,
|
1243 |
+
encoder_outputs=None,
|
1244 |
+
**kwargs,
|
1245 |
+
):
|
1246 |
+
# cut decoder_input_ids if past is used
|
1247 |
+
if past_key_values is not None:
|
1248 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1249 |
+
|
1250 |
+
return {
|
1251 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1252 |
+
"encoder_outputs": encoder_outputs,
|
1253 |
+
"past_key_values": past_key_values,
|
1254 |
+
"decoder_input_ids": decoder_input_ids,
|
1255 |
+
"attention_mask": attention_mask,
|
1256 |
+
"head_mask": head_mask,
|
1257 |
+
"decoder_head_mask": decoder_head_mask,
|
1258 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1259 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1260 |
+
}
|
1261 |
+
|
1262 |
+
@staticmethod
|
1263 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1264 |
+
reordered_past = ()
|
1265 |
+
for layer_past in past_key_values:
|
1266 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1267 |
+
return reordered_past
|