aijunzi commited on
Commit
55d4b20
1 Parent(s): fac661f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9285
26
  - name: F1
27
  type: f1
28
- value: 0.9283768410560365
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,9 +35,9 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 0.2127
39
- - Accuracy: 0.9285
40
- - F1: 0.9284
41
 
42
  ## Model description
43
 
@@ -68,8 +68,8 @@ The following hyperparameters were used during training:
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
- | No log | 1.0 | 250 | 0.3168 | 0.91 | 0.9081 |
72
- | No log | 2.0 | 500 | 0.2127 | 0.9285 | 0.9284 |
73
 
74
 
75
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.923
26
  - name: F1
27
  type: f1
28
+ value: 0.9229406051096526
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 0.2196
39
+ - Accuracy: 0.923
40
+ - F1: 0.9229
41
 
42
  ## Model description
43
 
 
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
+ | No log | 1.0 | 250 | 0.3262 | 0.9035 | 0.8997 |
72
+ | No log | 2.0 | 500 | 0.2196 | 0.923 | 0.9229 |
73
 
74
 
75
  ### Framework versions