Update README.md
Browse files
README.md
CHANGED
@@ -19,13 +19,24 @@ This model can be used to generate concise summaries of input text, particularly
|
|
19 |
### How to Use
|
20 |
You can use this model with the Hugging Face transformers library. Below is an example code snippet:
|
21 |
|
|
|
|
|
22 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
23 |
|
|
|
24 |
model_name = "ailm/pegsus-text-summarization"
|
25 |
model = PegasusForConditionalGeneration.from_pretrained(model_name)
|
26 |
tokenizer = PegasusTokenizer.from_pretrained(model_name)
|
27 |
|
|
|
28 |
text = "Your input text here"
|
|
|
|
|
29 |
tokens = tokenizer(text, truncation=True, padding="longest", return_tensors="pt")
|
|
|
|
|
30 |
summary = model.generate(**tokens)
|
31 |
-
|
|
|
|
|
|
|
|
19 |
### How to Use
|
20 |
You can use this model with the Hugging Face transformers library. Below is an example code snippet:
|
21 |
|
22 |
+
```bash
|
23 |
+
|
24 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
25 |
|
26 |
+
# Load the pre-trained model and tokenizer
|
27 |
model_name = "ailm/pegsus-text-summarization"
|
28 |
model = PegasusForConditionalGeneration.from_pretrained(model_name)
|
29 |
tokenizer = PegasusTokenizer.from_pretrained(model_name)
|
30 |
|
31 |
+
# Define the input text
|
32 |
text = "Your input text here"
|
33 |
+
|
34 |
+
# Tokenize the input text
|
35 |
tokens = tokenizer(text, truncation=True, padding="longest", return_tensors="pt")
|
36 |
+
|
37 |
+
# Generate the summary
|
38 |
summary = model.generate(**tokens)
|
39 |
+
|
40 |
+
# Decode and print the summary
|
41 |
+
print(tokenizer.decode(summary[0], skip_special_tokens=True))
|
42 |
+
|