File size: 2,051 Bytes
a89e3d0
 
 
 
 
 
 
 
 
a182bf6
 
a89e3d0
 
 
 
 
 
 
9dbdfd1
a89e3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a182bf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: mit
base_model: microsoft/Florence-2-base-ft
tags:
- generated_from_trainer
model-index:
- name: Florence-2-FT-JP-OCR
  results: []
datasets:
- EtashGuha/JapaneseDocQA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Florence-2-FT-JP-OCR

This model is a fine-tuned version of [microsoft/Florence-2-base-ft](https://huggingface.co/microsoft/Florence-2-base-ft) on [EtashGuha/JapaneseDocQA](https://huggingface.co/datasets/EtashGuha/JapaneseDocQA) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5827

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 14.3012       | 0.9662 | 100  | 3.1360          |
| 12.8837       | 1.9275 | 200  | 2.9369          |
| 12.1693       | 2.8889 | 300  | 2.7978          |
| 11.6903       | 3.8502 | 400  | 2.7166          |
| 11.3443       | 4.8116 | 500  | 2.6688          |
| 11.1585       | 5.7729 | 600  | 2.6340          |
| 10.9682       | 6.7343 | 700  | 2.6140          |
| 10.9556       | 7.6957 | 800  | 2.5960          |
| 10.7355       | 8.6570 | 900  | 2.5882          |
| 10.6794       | 9.6184 | 1000 | 2.5827          |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0