--- library_name: transformers license: mit base_model: microsoft/Florence-2-base-ft tags: - generated_from_trainer model-index: - name: Florence-2-FT-JP-OCR results: [] datasets: - EtashGuha/JapaneseDocQA --- # Florence-2-FT-JP-OCR This model is a fine-tuned version of [microsoft/Florence-2-base-ft](https://huggingface.co/microsoft/Florence-2-base-ft) on [EtashGuha/JapaneseDocQA](https://huggingface.co/datasets/EtashGuha/JapaneseDocQA) dataset. It achieves the following results on the evaluation set: - Loss: 2.5827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 14.3012 | 0.9662 | 100 | 3.1360 | | 12.8837 | 1.9275 | 200 | 2.9369 | | 12.1693 | 2.8889 | 300 | 2.7978 | | 11.6903 | 3.8502 | 400 | 2.7166 | | 11.3443 | 4.8116 | 500 | 2.6688 | | 11.1585 | 5.7729 | 600 | 2.6340 | | 10.9682 | 6.7343 | 700 | 2.6140 | | 10.9556 | 7.6957 | 800 | 2.5960 | | 10.7355 | 8.6570 | 900 | 2.5882 | | 10.6794 | 9.6184 | 1000 | 2.5827 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0