--- license: apache-2.0 language: - en - ta pipeline_tag: translation tags: - tamil - text-to-text --- ## Usage To use this model, you can either directly use the Hugging Face `transformers` library or you can use the model via the Hugging Face inference API. ### Model Information Training Details - **This model has been fine-tuned for English to Tamil translation.** - **Training Duration: Over 10 hours** - **Loss Achieved: 0.6** - **Model Architecture** - **The model architecture is based on the Transformer architecture, specifically optimized for sequence-to-sequence tasks.** ## 🔥 Example Usage Load and test the model using **Hugging Face Transformers**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load model and tokenizer model_name = "aishu15/colloquial-tamil" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Function to translate text def translate(text): inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=128) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example translations test_sentences = [ "This is so beautiful", "Bro, are you coming or not?", "My mom is gonna kill me if I don't reach home now!" ] for sentence in test_sentences: print(f"English: {sentence}") print(f"Colloquial Tamil: {translate(sentence)}\n")